BHARATIVIDYAPEETH'S

INSTITUTEOFCOMPUTERAPPLICATIONS\&MANAGEMENT (BVICAM)
(AffiliatedtoGuruGobindSinghIndraprasthaUniversity,ApprovedbyAICTE,NewDelhi)A-
4,PaschimVihar,RohtakRoad,NewDelhi-110063,Visitusat:http://www.bvicam.in/

Course Code: MCA-101

Course Name: Discrete Structures

Practice Questions (Theory)

	UNIT- I
Q1.	Design a set that contains the prime numbers less than 10.
Q2.	Construct a Venn diagram to illustrate the relationship between three sets A, B, and C .
Q3.	Prove that for any sets A, B, and $C,(A \cap B) \cup(A \cap C)=A \cap(B \cup C)$.
Q4.	Solve the equation $\|x-3\|=5$ and express the solution set in set-builder notation.
Q5.	Develop a relation on the set of integers that is both symmetric and transitive but not reflexive.
Q6.	Determine whether the relation $R=\{(1,2),(2,3),(3,4)\}$ is an equivalence relation, and if not, modify it to become one.
Q7.	Evaluate the equivalence class [2] in the relation $\mathrm{R}=\{(1,2),(2,3),(3,4)\}$.
Q8.	Solve the inequality $x^{\wedge} 2+y^{\wedge} 2 \leq 25$ and express the solution set
Q9.	Create a function $f(x)$ such that $f(f(x))=x$ for all real numbers x.
Q10.	Determine the range of the function $f(x)=2 x^{\wedge} 2-3 x+1$.
Q11.	Solve the functional equation $f(x+y)=f(x)+f(y)$ for the function $f(x)=a x+b$.
Q12.	Find the inverse function of $f(x)=3 x+5$.
Q13.	Prove the sum of the first n odd numbers is $\mathrm{n}^{\wedge} 2$ using mathematical induction.
Q14.	Use mathematical induction to prove the inequality $\mathrm{n}!>2^{\wedge} \mathrm{n}$ for all positive integers $\mathrm{n} \geq$ 4.
Q15.	Prove the statement: For all positive integers $n, 3^{\wedge} n>n^{\wedge} 2$ using mathematical induction.
Q16.	Show that $6^{\wedge} \mathrm{n}-1$ is divisible by 5 for all positive integers n using mathematical induction.
Q17.	Determine the number of permutations of the word "MATH" and list them.
Q18.	Find the number of ways to arrange 5 books on a shelf if 2 specific books must be next to each other.
Q19.	Solve the permutation problem: In how many ways can 5 students be seated in a row if 2 of them insist on sitting next to each other?
Q20.	Calculate the number of permutations of the word "MISSISSIPPI."
Q21.	Determine the number of combinations of 5 items taken 3 at a time.
Q22.	Find the number of ways to select a committee of 4 people from a group of 8 if 2 members must be female.
Q23.	Solve the combination problem: In how many ways can 5 books be chosen from a shelf of 10 books?
Q24.	Calculate the number of combinations of 6 items taken 2 at a time.
	UNIT II

Q25. Formulate a truth table for the logical expression $(p \wedge q) \vee(\sim p \wedge r)$.
Q26. Prove the logical equivalence: $\sim(p \vee q) \equiv(\sim p \wedge \sim q)$.
Q27. Solve the logical equation: $(p \vee q) \wedge(\sim p \vee r)=r$.
Q28. Determine whether the logical expression $p \Rightarrow(q \wedge r)$ is a tautology.
Q29. Construct a Hasse diagram for the poset ($Z_{,} \leq$).
Q30. Prove that the set of all subsets of a set forms a lattice under set inclusion.
Q31. Determine the greatest lower bound and least upper bound for the poset (P(\{1, 2, 3\}), \subseteq).
Q32. Find the meet and join operations for the lattice $(Z, \mathrm{gcd}, \mathrm{Icm})$.
Q33. Simplify the Boolean expression $F(A, B, C)=A^{\prime} B+A B^{\prime}+A C$.
Simplify the Boolean expression $F(A, B, C, D)=\left(A+B^{\prime}\right)\left(C^{\prime}+D\right)\left(A^{\prime}+B+D^{\prime}\right)$.
Q34. Solve the Boolean equation $A B+A^{\prime} B=A+B$.
Q35. Minimize the Boolean function $F(A, B, C)=\Sigma(0,1,3,5,6,7)$.
Q36. Find the minimal sum-of-products expression for the function $F(A, B, C, D)=\Sigma(0,1,3,5$, $7,8,10,12,14,15)$.
Q37. Simplify the Boolean function $F(A, B, C, D)=\Sigma(1,3,5,7,9,11,13,15)$.
Q38. Solve the K-map problem: Minimize the function $F(A, B, C)=\Sigma(0,1,3,5,6,7)$.
Q39. Analyze the logical expression $\sim(p \wedge q) \vee(p \wedge r)$ to determine its truth values for different assignments to p, q, and r.
Q40. Evaluate the logical expression $(p \wedge q) \Rightarrow(r \vee \sim q)$ when p is true, q is false, and r is true.

UNIT III

Q41. Define a group and provide an example.
Q42. Prove that the set of integers under addition forms a group.
Q43. Solve the equation $x^{\wedge} 3=e$ in the group $\left(Z_{1}+\right)$, where e is the identity element.
Q44. Determine whether the set of even integers forms a subgroup of the group of integers under addition.
Q45. State and prove Fermat's Little Theorem.
Q46. Calculate the multiplicative inverse of 17 modulo 31.
Q47. Solve the linear congruence $3 x \equiv 7(\bmod 11)$.
Q48. Determine the greatest common divisor (GCD) of 72 and 120 using the Euclidean algorithm.
Q49. Prov
Prove that the order of an element in a group divides the order of the group.
Q50. Show that the set of rational numbers with addition forms an infinite cyclic group.
Q51. Determine whether the group of invertible 2×2 matrices under matrix multiplication is abelian.
Q52. Solve the equation $x^{\wedge} 2=e$ in the group $(Z / 6 Z,+)$, where e is the identity element.
Q53. Calculate the Euler's totient function $\varphi(35)$.
Q54. Solve the system of congruences: $x \equiv 2(\bmod 3) x \equiv 3(\bmod 5) x \equiv 4(\bmod 7)$
Q55. Prove Lagrange's theorem for finite groups.

UNIT IV

Q56. Define a simple path and a circuit in a graph.
Q57. Prove that if a graph has n vertices, the maximum number of edges in a path is $\mathrm{n}-1$.
Q58. Calculate the length of the shortest path between two vertices in a given weighted graph.
Q59. Determine whether a given graph contains an Eulerian circuit or path.
Q60. Explain Dijkstra's algorithm for finding the shortest path in a weighted graph.
Q61. Describe Warshall's algorithm for finding the transitive closure of a directed graph.

Q62.	Compute the transitive closure of a given directed graph using Warshall's algorithm.

Q63. Discuss the application of Warshall's algorithm in computing the reachability matrix.
Q64. Define Prim's algorithm for finding the minimum spanning tree of a graph.
Q65. Prove that Prim's algorithm always produces a minimum spanning tree.
Q66. Find the minimum spanning tree of a given weighted graph using Prim's algorithm.
Q67. Discuss the application of Prim's algorithm in network design and clustering.
Q68. Explain Kruskal's algorithm for finding the minimum spanning tree of a graph.
Q69. Analyze the time complexity of Kruskal's algorithm.
Q70. Compute the minimum spanning tree of a given weighted graph using Kruskal's algorithm.
Q71. Compare and contrast Prim's and Kruskal's algorithms for finding minimum spanning trees.
Q72. Define a tree and its properties.
Q73. Prove that a connected graph with n vertices and $\mathrm{n}-1$ edges is a tree.

