Bharati Vidyapeeth's Institute of Computer Applications and Management A-4, Paschim Vihar, New Delhi-63.

MCA – 1st Semester Model Paper Discrete Structures

Note: Answer all Questions *Max. Marks: 75*

Max. Time: 03 Hrs

(5*5)

Section A (compulsory)

1) Suppose that a connected planar graph has 20 vertices each of degree 3 .In how many regions this planar graph split the plane.

2) Prove by mathematical induction that for every positive integer $n \ge 1$, $(3^n + 7^n - 2)$ is divisible by 8

3) Show that the 4 fourth roots of unity form a group with respect to multiplication.?

4) Construct the binary tree whose in order and pre order traversals are EACIFHDBG and FAEICDHGB respectively.

5) Let L be a lattice then for all a,b,c,d in L show that (avb)=b if and only if a<=b

Unit 1

1) In a group of 20 adults there are 8 females, 9 literate and 6 female literate. Find number of male literate 6

2) If R is the relation on the set of positive integers such that (a,b) belongs to r if and only if $a^2 + b$ is even, prove that R is an equivalence relation. 6.5

OR

1) Investigate the validity of preposition pV ($q \rightarrow p$),~p r |- ~q 6

2) Find the transitive closure of the following relations given in matrix form using warshal's algorithm

10010	
01000	
0 0 0 1 1	
10000	6.5

Unit 2

1)	Simplify the following Boolean expression using K-map	
	x'z' + y'z' + yz' + xyz	6

2) Let L is a distributive lattice. Show that if there exists an a with $a \land x=a \land y$ and $a \lor x = a \lor y$ then x=y 6.5

OR

1) Express the following using principle DNF and CNF form

F(a,b,c) = (a'+b)' + a'c2) Find the recurance relation $a_{n+1} - a_n = 3n^2 - n$; n>=0 6.5

Unit 3

- If H is a subgroup of G such that x² belongs to H for every x belongs to G, prove that H is a normal subgroup of G.
- 2) Show that $2^{340} = 1 \pmod{11}$ by fermett little theorem 6.5 OR
- 1) Find the code words generated by the parity check matrix
- H=1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 When the encoding function is $B^3 -> B^6$

Unit 4

1) Draw minimum spanning tree for the weightrd graph by using Kruskals algorithm 6

2) Find minimum spanning of following graph

OR

1) Explain Konisberg bridge problem. Represent the problem by means of graph.	Does
the problem have a solution.	6
2) Check for isomorphisim	6.5

6.5