Bharati Vidyapeeth's
 Institute of Computer Applications and Management
 A-4, Paschim Vihar, New Delhi-63.

 MCA - $1^{\text {st }}$ Semester

 MCA - $1^{\text {st }}$ Semester
 Model Paper Discrete Structures

Note: Answer all Questions
Max. Marks: 75
Max. Time: 03 Hrs

Section A (compulsory)

1) Suppose that a connected planar graph has 20 vertices each of degree 3 .In how many regions this planar graph split the plane.
2) Prove by mathematical induction that for every positive integer $n>=1,\left(3^{n}+7^{n}-2\right)$ is divisible by 8
3) Show that the 4 fourth roots of unity form a group with respect to multiplication.?
4) Construct the binary tree whose in order and pre order traversals are EACIFHDBG and FAEICDHGB respectively.
5) Let L be a lattice then for all a,b,c,d in L show that (avb)=b if and only if $a<=b$

Unit 1

1) In a group of 20 adults there are 8 females, 9 literate and 6 female literate. Find number of male literate
2) If R is the relation on the set of positive integers such that (a, b) belongs to r if and only if $a^{2}+b$ is even, prove that R is an equivalence relation.

OR

1) Investigate the validity of preposition $p V(q \rightarrow p), \sim p r \mid-\sim q$
2) Find the transitive closure of the following relations given in matrix form using warshal's algorithm

$$
\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}
$$

Unit 2

1) Simplify the following Boolean expression using K-map $x^{\prime} z^{\prime}+y^{\prime} z^{\prime}+y z^{\prime}+x y z$
2) Let L is a distributive lattice. Show that if there exists an a with $a \wedge x=a \wedge y$ and $a v x=a v y$ then $x=y$

OR

1) Express the following using principle DNF and CNF form

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c})=\left(\mathrm{a}^{\prime}+\mathrm{b}\right)^{\prime}+\mathrm{a}^{\prime} \mathrm{c}
$$

2) Find the reccurance relation $a n+1-a n=3 n^{2}-n ; n>=0$ 6.5

Unit 3

1) If H is a subgroup of G such that x^{2} belongs to H for every x belongs to G, prove that H is a normal subgroup of G .
2) Show that $2^{340}=1(\bmod 11)$ by fermett little theorem 6.5

OR

1) Find the code words generated by the parity check matrix
$\mathrm{H}=111$
101
011
12.5

100
010
001
When the encoding function is $\mathrm{B}^{3}->\mathrm{B}^{6}$

Unit 4

1) Draw minimum spanning tree for the weightrd graph by using Kruskals algorithm
2) Find minimum spanning of following graph
6.5

OR

1) Explain Konisberg bridge problem. Represent the problem by means of graph. Does the problem have a solution.
2) Check for isomorphisim
