

BHARATI VIDYAPEETH'S

INSTITUTE OF COMPUTER APPLICATIONS & MANAGEMENT (BVICAM)

(Affiliated to Guru Gobind Singh Indraprastha University, Approved by AICTE, New Delhi) A-4, Paschim Vihar, Rohtak Road, New Delhi-110063, Visit us at: http://www.bvicam.in/

Course Code: MCA-101

Course Name: Discrete Structures

Assignment - 3

(Based on Unit - IV)

Sr.	Questions	BTL	CO	Marks
No.				
1	If all the vertices of an undirected graph are each of odd degree k, Prove that number of edges of graph is a multiple of k.	BTL4	CO5	5
2	 For each of the following degree sequence find if there exists a graph. Draw it a) 4,4,4,3,2 b) 5,5,4,3,2,1 c) 3,3,3,3,2 	BTL1	CO5	5
3	Determine whether the following pairs of graph are isomorphic or not	BTL5	CO5	5
4	Explain Konisberg problem. Does it has a solution a) (a) (a) (b) (a) (b) (a) (b) (c) (a) (c) (BTL4	CO5	5
5	 Analyse the following and give a suitable example for each a) An Eulerian circuit that is also a Hamiltonian circuit. b) An Eulerian circuit and a Hamiltonian circuit that is distinct. c) An Eulerian circuit but not a Hamiltonian circuit. d) An Hamiltonian circuit but not an euler circuit. 	BTL4	CO5	5

	e) Neither an Eulerian circuit nor a Hamiltonian circuit.			
6	Determine shortest distance between A and H B 2 C C A G CA G CA G CA G	BTL4	CO5	5
7	Treanslate the expression $((a -c) * d)/(a + (b - d))$ as tree and write the prefix and postfix expression	BTL2	CO5	3
8	Evaluate the value of expression + $-32^{23}/8 - 42$	BTL5	CO5	3
9	Evaluate the minimum spanning tree $A = \begin{bmatrix} 16 & B \\ \hline 19 & 5 \end{bmatrix} = \begin{bmatrix} 16 & B \\ \hline 19 & 5 \end{bmatrix} = \begin{bmatrix} 16 & B \\ \hline 19 & 5 \end{bmatrix} = \begin{bmatrix} 16 & B \\ \hline 10 & 5 \end{bmatrix} = \begin{bmatrix} 16 & 16 \\ \hline 10 & 5 \end{bmatrix} = \begin{bmatrix} 16 & 16 \\ \hline 10 & 16 \end{bmatrix} = \begin{bmatrix} 16 & 16 \\$	BTL5	CO5	5
10	Determine which of the following is strongly , weakly or unilaterally connected	BTL4	CO5	3