BHARATI VIDYAPEETH'S

INSTITUTE OF COMPUTER APPLICATIONS \& MANAGEMENT (BVICAM)

(Affiliated to Guru Gobind Singh Indraprastha University, Approved by AICTE, New Delhi)
A-4, Paschim Vihar, Rohtak Road, New Delhi-110063, Visit us at: http://www.bvicam.in/

Assignment - 2

(Based on Unit - III)

Sr. No.	Question	BTL	CO	Marks
1	Assume G is an abelian group with identity e, prove that all elements x of G satisfying the equation $x^{2}=e$ form a subgroup H of G .	BTL4	CO 2	5
2	Assume G is the set of all ordered pairs (a, b) where a ($!=0$) and b are real the binary operation * on g is defined by $(\mathrm{a}, \mathrm{~b})^{*}(\mathrm{c}, \mathrm{~d})=(\mathrm{ac}, \mathrm{bc}+\mathrm{d})$ Show that $\left(\mathrm{G},{ }^{*}\right)$ is a non-abelian group. Show also that the subset H of all those elements of G which are of the form $(1, b)$ is a subgroup of G.	BTL4	CO 2	5
3	Prove that the set of inverses of the elements of a right coset is a left coset, show that (Ha) ${ }^{-1}=a^{-1} \mathrm{H}^{-1}$.	BTL4	CO 2	5
4	If for each a and b is group $G(a b)^{2}=a^{2} b^{2}$. Prove G is abelian.	BTL4	CO 2	
5	If H is a normal subgroup of G and K is a subgroup of G such that H C K C G. Prove That that H is a normal subgroup of K also.	BTL4	CO 2	5
6	Given the Generator Matrix G: 10100100 10111000 00101101 Corresponding to encoding function $\mathrm{e}: \mathrm{B}^{3} \rightarrow \mathrm{~B}^{8}$, find parity check matrix and decode following received words 10110101, 10011001,00010100 and 00110011.	BTL1	CO 2	5
7	Find integer m and n such that $28844 \mathrm{~m}+15712 \mathrm{n}=4$	BTL1	CO 4	3
8	Make use of fermat's little theorem to compute $3^{302}(\bmod 5)$	BTL4	CO4	3

