
Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.1

Operating Systems with Linux

(MCA-105)

Unit - 2

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2

CPU Scheduling

 The objective of multiprogramming is to have some process running at

all times.

 A process is executed until it must wait, typically for the completion of

some I/O request.

 When one process has to wait, the operating system takes the CPU away

from that process and gives the CPU to another process.

 Every time one process has to wait, another process can take over use of

the CPU.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3

CPU-I/O Burst Cycle

 Process execution consists of a cycle of

CPU execution and I/O wait.

 Processes alternate between these two

states.

 Process execution begins with a CPU

burst.

 That is followed by an I/O burst, which

is followed by another CPU burst, then

another I/O burst, and so on.

• Eventually, the final CPU burst ends

with a system request to terminate

execution.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4

CPU-I/O Burst Cycle (contd…)

 The durations of CPU bursts vary greatly from process to process and

from computer to computer.

 However, it tend to have a following frequency curve:

o This curve is generally characterized as exponential, with a large number of short CPU

bursts and a small number of long CPU bursts.

• An I/O-bound program typically

has many short CPU bursts.

• A CPU-bound program might have

a few long CPU bursts.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5

CPU Scheduler

 Whenever the CPU becomes idle, the operating system must select one

of the processes in the ready queue to be executed.

 The selection process is carried out by the short-term scheduler (or CPU

scheduler).

 The scheduler selects a process from the processes in memory that are

ready to execute and allocates the CPU to that process.

 The ready queue is not necessarily a first-in, first-out (FIFO) queue.

 The records in the queues are generally PCBs of the processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6

Circumstances for Scheduling Decisions

 CPU-scheduling decisions may take place under the following circumstances:

1. When a process switches from the running state to the waiting state (for example, as the

result of an I/O request or an invocation of wait for the termination of one of the child

processes).

2. When a process switches from the running state to the ready state (for example, when

an interrupt occurs).

3. When a process switches from the waiting state to the ready state (for example, at

completion of I/O).

4. When a process terminates.

 For situations 1 and 4, there is no choice in terms of scheduling.

• A new process (if one exists in the ready queue) must be selected for execution.

• There is a choice, however, for situations 2 and 3.

 When scheduling takes place only under circumstances 1 and 4, scheduling

scheme is called non-preemptive; otherwise, it is preemptive.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7

Preemptive and Non-Preemptive Scheduling

 Non-Preemptive Scheduling

 The CPU is allocated to the process till it terminates or switches to waiting

state.

 This scheduling method was used by Microsoft Windows 3.x.

 Preemptive Scheduling

 The CPU is allocated to the processes for the limited time.

 Windows 95 introduced preemptive scheduling, and all subsequent versions of

Windows operating systems have used preemptive scheduling.

 The Mac OS X operating system for the Macintosh also uses preemptive

scheduling.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8

Preemptive vs. Non-Preemptive Scheduling

Preemptive Scheduling Non-Preemptive Scheduling

The CPU is allocated to the processes for

the limited time.

The CPU is allocated to the process till it

terminates or switches to waiting state.

Processor can be preempted to execute a

different process in the middle of execution

of any current process.

Once Processor starts to execute a process

it must finish it before executing the other. It

cannot be paused in middle.

CPU utilization is more as compared to Non-

Preemptive Scheduling.

CPU utilization is less as compared to

Preemptive Scheduling.

Waiting time and Response time is less. Waiting time and Response time is more.

If a high priority process frequently arrives in

the ready queue, low priority process may

starve.

If a process with long burst time is running

CPU, then another process with less CPU

burst time may starve.

Preemptive scheduling is flexible. Non-preemptive scheduling is rigid.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9

Dispatcher

 The dispatcher (a component of CPU-scheduling function) gives control

of the CPU to the process selected by the short-term scheduler.

 The functions of dispatcher involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart the program

• The dispatcher should be as fast as possible, since it is invoked during

every process switch.

• The time taken by dispatcher to stop one process and start another

running is known as the dispatch latency.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10

Scheduling Criteria

 CPU Utilization

• We want to keep the CPU as busy as possible. CPU utilization can range

from 0 to 100 percent.

 Throughput

• If the CPU is busy executing processes, then work is being done.

Throughput refers to the number of processes completed per time unit.

 Turnaround Time

• The interval from the time of submission of a process to the time of

completion is called turnaround time.

• Turnaround time is the sum of the periods spent waiting to get into

memory, waiting in the ready queue, executing on the CPU, and doing I/O.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11

Scheduling Criteria (contd…)

 Response Time

• In an interactive system, turnaround time may not be the best criterion.

• Response time is the time it takes to start responding, not the time it takes

to output the response.

• It is desirable to:

• Maximize CPU utilization and throughput

• Minimize turnaround time, waiting time and response time

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12

Scheduling Algorithms

 First-Come, First-Served Scheduling

 Shortest-Job-First Scheduling

 Priority Scheduling

 Round-Robin Scheduling

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

Refer to PDF File

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13

Multilevel Queue Scheduling

 The processes can be classified into different groups where each group has its

own scheduling needs.

 A common classification is:

 Foreground (Interactive) Processes

 Background Processes

 These two types of processes have different requirements and so may have

different scheduling needs.

 A multilevel queue scheduling algorithm partitions the ready queue into

several separate queues.

 The processes are permanently assigned to one queue, generally based on some

property of the process, such as memory size, process priority, or process type.

 Each queue has its own scheduling algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14

Multilevel Queue Scheduling (contd…)

 Separate queues might be used for different categories of processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15

Multilevel Queue Scheduling (contd…)

 Scheduling among the queues is commonly implemented as fixed-

priority preemptive scheduling.

 Each queue has absolute priority over lower-priority queues.

 For example, no process in the batch queue, could run unless the queues for

system processes, interactive processes, and interactive editing processes were

all empty.

 If an interactive editing process entered the ready queue while a batch process

was running, the batch process would be preempted.

• Another possibility is to time-slice among the queues.

 Each queue gets a certain portion of the CPU time, which it can then schedule

among its various processes.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16

Multilevel Queue Scheduling: Example

 Process : P1 P2 P3 P4

 Arrival Time : 0 0 0 10

 Burst Time : 4 3 8 5

 Queue No. : 1 1 2 1

 Priority of Queue 1 is greater than Queue 2.

 Queue 1 uses Round Robin (Time Quantum = 2) and Queue 2 uses First-Come, First-Served.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17

Questions

• Three process P1, P2 and P3 arrive at time zero. The total time spent by

the process in the system is 10ms, 20ms, and 30ms respectively. They

spent first 20% of their execution time in doing I/O and the rest 80% in

CPU processing. What is the percentage utilization of CPU using FCFS

scheduling algorithm?

• Three process p1, P2 and P3 arrive at time zero. Their total execution

time is 10ms, 15ms, and 20ms respectively. They spent first 20% of

their execution time in doing I/O, next 60% in CPU processing and the

last 20% again doing I/O. For what percentage of time was the CPU

free? Use Round robin algorithm with time quantum 5ms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18

Multilevel Feedback Queue Scheduling

 The multilevel feedback queue scheduling algorithm allows a process to

move between queues.

 The idea is to separate processes according to the characteristics of their

CPU bursts.

 If a process uses too much CPU time, it will be moved to a lower-priority

queue.

 A process that waits too long in a lower-priority queue may be moved to a

higher-priority queue.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19

Multilevel Feedback Queue Scheduling

 A process entering the ready queue is put in

Queue 0.

 A process in Queue 0 is given a time

quantum of 8 milliseconds. If it does not

finish within this time, it is moved to the tail

of Queue 1.

 If Queue 0 is empty, the process at the head

of Queue 1 is given a quantum of 16

milliseconds. If it does not complete, it is

preempted and is put into Queue 2.

 Processes in Queue 2 are run on an FCFS

basis but are run only when Queues 0 and 1

are empty.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20

Process Synchronization: Background

• Both, the producer and consumer routines are correct separately.

• They may not function correctly when executed concurrently.

Producer

Consumer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21

Process Synchronization: Background

 An incorrect state may arrive because both processes are allowed to

manipulate the variable counter concurrently.

 A situation, where several processes access and manipulate the same

data concurrently and the outcome of the execution depends on the

particular order in which the access takes place, is called a race

condition.

 In our example, to guard against the race condition, we need to ensure

that only one process at a time can manipulate the variable counter.

 To make such a guarantee, the processes must be synchronized in

some way.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22

The Critical-Section Problem

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}.

 Each process has a segment of code, called a critical section, in which

the process may be changing common variables, updating a table, etc.

 When one process is executing in its critical section, no other process is

to be allowed to execute in its critical section.

 No two processes are executing in their critical sections at the same time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23

The Critical-Section Problem (contd…)

 The solution of critical-section problem involves design of a protocol that the

processes can use to cooperate.

 Each process must request permission to enter its critical section.

 The section of code implementing this request is the entry section.

 The critical section may be followed by an exit section.

 The remaining code is the remainder section.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24

Solution of Critical-Section Problem

 A solution to the critical-section problem must satisfy the following

three requirements:

 Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

 Progress - If no process is executing in its critical section and some processes

wish to enter their critical sections, then only those processes that are not

executing in their remainder sections should decide which will enter its critical

section next, in a finite time.

 Bounded Waiting - After a process makes a request for getting into its critical

section, there is a limit for how many other processes can get into their

critical section, before this process's request is granted. So after the limit is

reached, system must grant the process permission to get into its critical

section.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25

Critical Section Problem: Algorithm 1

This algorithm works only for two processes.

turn = i;

do{

 while(turn!=i); <-- ENTRY SECTION

 CRITICAL SECTION

 turn = j; <-- EXIT SECTION

 REMAINDER SECTION

}while(TRUE);

Given: int turn; (Shared Variable)

Process Pi

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26

Critical Section Problem: Algorithm 1 (contd…)

This algorithm does not satisfy the progress requirement because there is strict

alternation between the processes.

turn = i;

do{

 while(turn!=i);

 CRITICAL SECTION

 turn = j;

 REMAINDER SECTION

}while(TRUE);

Given: int turn; (Shared Variable)

Process Pi Process Pj

turn = j;

do{

 while(turn!=j);

 CRITICAL SECTION

 turn = i;

 REMAINDER SECTION

}while(TRUE);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27

Critical Section Problem: Algorithm 2

This algorithm also works only for two processes.

do{

 flag[i] = TRUE;

 while(flag[j]); <-- ENTRY SECTION

 CRITICAL SECTION

 flag[i] = FALSE; <-- EXIT SECTION

 REMAINDER SECTION

}while(TRUE);

Given: boolean flag[2]; flag[0] = FALSE; flag[1] = FALSE;

Process Pi

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28

Critical Section Problem: Algorithm 2 (contd…)

This algorithm can fail the progress requirement if both processes set their flags to

true and then both execute the while loop.

do{

 flag[i] = TRUE;

 while(flag[j]);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

}while(TRUE);

Process Pi Process Pj

do{

 flag[j] = TRUE;

 while(flag[i]);

 CRITICAL SECTION

 flag[j] = FALSE;

 REMAINDER SECTION

}while(TRUE);

Given: boolean flag[2]; flag[0] = FALSE; flag[1] = FALSE;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29

Critical Section Problem: Peterson’s Solution

 Peterson’s Solution is a classical software based solution to the critical

section problem.

 Peterson’s algorithm is used to synchronize two processes.

 Peterson’s solution requires the two processes to share two data items:

 int turn;

 boolean flag[2];

 Variable turn indicates whose turn it is to enter its critical section.

o If turn == i, then process Pi is allowed to execute in its critical section.

 Flag array is used to indicate if a process wants to enter its critical section.

o If flag[i] == true, it indicates that Pi wants to enter its critical section.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30

Structure of Process Pi in Peterson’s Solution

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31

Structure of Process Pi and Pj

• Peterson’s algorithm satisfy the three requirements (mutual exclusive, progress,

bounded waiting) of solution of critical section problem.

do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] == TRUE && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE

 REMAINDER SECTION

}while(TRUE);

do {

 flag[j] = TRUE;

 turn = i;

 while (flag[i] == TRUE && turn == i);

 CRITICAL SECTION

 flag[j] = FALSE

 REMAINDER SECTION

}while(TRUE);

Process Pi Process Pj

Given: boolean flag[2]; int turn; flag[0]=false; flag[1]=false;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32

Limitations of Peterson’s Solution

• Works only for TWO Processes.

• Busy Waiting

 Busy waiting, also known as spinning, or busy looping is a process synchronization

technique in which a process/task waits and constantly checks for a condition to be

satisfied before proceeding with its execution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33

Waiting Approaches

• There are two general approaches to waiting in operating systems:

 Busy Waiting - A process/task can continuously check for the condition to be

satisfied while consuming the processor.

 Sleeping (Blocked Waiting or Sleep Waiting) - A process can wait without

consuming the processor. In such a case, the process/task is alerted or

awakened when the condition is satisfied.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34

Busy Waiting

• Busy looping is usually used to achieve mutual exclusion in operating

systems.

• Busy waiting can be inefficient because the looping procedure is a waste of

computer resources

• Although inefficient, busy waiting can be beneficial in mutual exclusion if the

waiting time is short and insignificant.

• Additionally, busy waiting is quick and simple to understand and implement.

• A workaround solution for the inefficiency of busy waiting that is

implemented in most operating systems is the use of a delay function.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35

Sleep Waiting

• In this case, the process/task is alerted or awakened when the condition is

satisfied.

• A delay function (sleep system call) places the process involved in busy

waiting into an inactive state for a specified amount of time.

• In this case, resources are not wasted as the process is “asleep”.

• After the sleep time has elapsed, the process is awakened to continue its

execution.

• If the condition is still not satisfied, the sleep time is incremented until the

condition can be satisfied.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36

Bakery Algorithm

 Bakery Algorithm is a critical section solution for n processes.

 Each process, wanting to enter critical section, gets a token number.

 The token numbering scheme always generates numbers in increasing

order of enumeration; i.e., 1, 2, 3, 3, 4, 5, …

 A process with lowest token number will enter the critical section.

 The algorithm preserves the first come first serve property.

 If two processes have same token number, the process with lower

process id (PId) will enter the critical section.

 The token number of process is set to 0 when it finishes execution.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37

Bakery Algorithm: Structure of Process Pi

do {

 choosing[i] = TRUE;

 number[i] = MAX(number[0], number[1], ..., number[n-1]) + 1;

 choosing[i] = FALSE;

 for (j = 0; j < n; j++) {

 while (choosing[j]);

 while ((number[j] != 0) && ((number[j],j) < (number[i],i));

 }

 CRITICAL SECTION

 number[i] = 0;

 REMAINDER SECTION

}while(TRUE);

Process Pi

boolean choosing[N] = {FALSE, ..., FALSE};

int number[N] = {0, ..., 0};

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38

Solution using Lock

do {

 while (Lock != 0);

 Lock = 1;

 CRITICAL SECTION

 Lock = 0;

 REMAINDER SECTION

}while(TRUE);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39

Synchronization Hardware

 Uniprocessor Environment

 Critical-section problem could be solved if interrupts could be prevented

from occurring (while a shared variable was being modified).

o This is often the approach taken by non-preemptive kernels.

 Multiprocessor Environment

 Disabling interrupts on a multiprocessor can be time consuming.

 With special atomic hardware instructions, solution of critical-section

problem can be done.

o TestAndSet()

o Swap()

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40

TestAndSet()
Definition of TestAndSet()

Implementation of TestAndSet()

This algorithm satisfies the
mutual-exclusion requirement,
but do not satisfy the bounded-
waiting requirement.

It is executed atomically
(that is, as one
uninterruptible unit)

If two TestAndSet() instructions are executed simultaneously (each on a different CPU),
they will be executed sequentially in some arbitrary order.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41

Swap
Definition of Swap()

Implementation of Swap()

This algorithm satisfies the
mutual-exclusion requirement,
but do not satisfy the bounded-
waiting requirement.

It is executed atomically
(that is, as one
uninterruptible unit)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42

Semaphore

 In 1965, proposed by Dijkstra, Semaphore is a mechanism that can be used

to provide synchronization of tasks (to solve critical-section problem).

 A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations: wait() and signal().

 The initial value of S depends on how many processes are allowed in CS.

wait(S)

{

 while(S <= 0);

 S--;

}

wait()

signal(S)

{

 S++;

}

signal()

The testing of the integer
value of S (S ≤ 0), as well
as its possible
modification (S--), must
be executed without
interruption.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43

Types of Semaphores

 Binary Semaphore

• It is a special form of semaphore used for implementing mutual exclusion,

hence it is often called a Mutex Lock.

• A binary semaphore is initialized to 1 and only takes the values 0 and 1

during execution of a program.

• It can be used to deal with the critical-section problem for multiple

processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44

Types of Semaphores

• Counting Semaphore

 Counting semaphores can be used to control access to a given resource

consisting of a finite number of instances.

 It is initialized to the number of resources available.

 Each process that wishes to use a resource performs a wait() operation on

the semaphore (decrementing the count).

 When a process releases a resource, it performs a signal() operation

(incrementing the count).

 When the count for the semaphore goes to 0, all resources are being used.

After that, processes that wish to use a resource will block until the count

becomes greater than 0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45

Implementation of Semaphore

Mutual-Exclusion Implementation with Semaphores

• The main disadvantage of the semaphore definition given here is that

it requires busy waiting.

 While a process is in its critical section, any other process that tries to

enter its critical section must loop continuously in the entry code.

do{

 wait(S);

 CRITICAL SECTION

 signal(S);

 REMAINDER SECTION

}while(TRUE)

wait(S){

 while(S <= 0);

 S--;

}

signal(S){

 S++;

}

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46

Spinlock

• Busy waiting wastes CPU cycles that some other process might be able

to use productively.

• The semaphore having busy waiting mechanism is also called a spinlock

because the process “spins” while waiting for the lock.

• Spinlock mechanism has an advantage in that no context switch is

required when a process waits on a lock

 When locks are expected to be held for short times, spinlocks are useful.

 Spinlocks are often employed on multiprocessor systems where one thread

can “spin” on one processor while another thread performs its critical

section on another processor.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47

Solution of Spinlock (Busy Waiting)

• To overcome the need for busy waiting, we can modify the definition of

the wait() and signal() semaphore operations.

• When a process executes the wait() operation and finds that the

semaphore value is not positive, it must wait.

 However, rather than engaging in busy waiting, the process can block itself.

 The block operation places a process into a waiting queue associated with

the semaphore, and the state of the process is switched to the waiting

state. Then control is transferred to the CPU scheduler, which selects

another process to execute.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48

Solution of Spinlock (Busy Waiting)

• To overcome the need for busy waiting, we can modify the definition of

the wait() and signal() semaphore operations.

The block() operation

suspends the process that

invokes it. The wakeup(P)

operation resumes the

execution of a blocked process

P. These two operations are

provided by the operating

system as basic system calls.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49

Solution of Spinlock (Busy Waiting)

• In the solution of busy waiting, semaphore values may be negative.

• Semaphore values are never negative under the classical definition of

semaphores with busy waiting.

• If a semaphore value is negative, its magnitude is the number of

processes waiting on that semaphore.

• The list of waiting processes can be easily implemented by a link field in

each process control block (PCB).

• To ensure bounded waiting, a FIFO queue or any other queuing strategy

may be used.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50

Limitations of Semaphores

• Deadlocks

 Consider a system consisting of two processes, P0 and P1, each accessing

two semaphores, S and Q, set to the value 1:

• Suppose that P0 executes wait(S)

and then P1 executes wait(Q).

• When P0 executes wait(Q), it must

wait until P1 executes signal(Q).

• Similarly, when P1 executes wait(S),

it must wait until P0 executes

signal(S).

• Since these signal() operations

cannot be executed, P0 and P1 are

deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51

Limitations of Semaphores

• Indefinite Blocking or Starvation

 Indefinite blocking may occur if we remove processes from the list

associated with a semaphore in LIFO (last-in, first-out) order.

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52

Classic Problems of Synchronization

 Bounded-Buffer Problem

 Readers–Writers Problem

 Dining-Philosophers Problem

Solution using Semaphore

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53

Bounded-Buffer Problem

• The bounded-buffer problem is also known as producer-consumer problem.

• Both, the producer and consumer routines are correct separately.

• They may not function correctly when executed concurrently.

Producer

Consumer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54

Bounded-Buffer Problem - Solution

• Assume,

 Buffer Size = n slots

 semaphore mutex (for mutual exclusion)

mutex = 1

 semaphore empty (number of empty slots in buffer)

empty = n

 semaphore full (number of full slots in buffer)

 full = 0

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55

Bounded-Buffer Problem - Solution

Producer Process Consumer Process

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56

Readers–Writers Problem

• Consider a situation where a shared resource (such as file or dataset) is

to be accessed by multiple concurrent processes.

• Some of these processes may want only to read the database, whereas

others may want to update (that is, to read and write) the database.

• We distinguish between these two types of processes - reader and

writer.

 If two readers access the shared data simultaneously, no adverse effects

will result.

 If a writer and some other process (either a reader or a writer) access the

database simultaneously, inconsistency may occur.

• This synchronization problem is referred to as the readers–writers problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57

Readers–Writers Problem - Solution

• Assume,

 int readcount = 0

The readcount variable keeps track of how many processes are currently reading

the object.

 semaphore mutex

mutext is used for mutual exclusion when the variable readcount is updated.

mutex = 1

 semaphore wrt

wrt functions as a mutual-exclusion semaphore for the writers.

wrt = 1

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58

Readers–Writers Problem - Solution

Write Process(s) Reader Process(s)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59

Dining-Philosophers Problem

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60

Dining-Philosophers Problem

• Consider a situation where five philosophers share a circular table surrounded

by five chairs, each belonging to one philosopher.

• They are in thinking-eating cycle.

• In the center of the table is a bowl of rice, and the table is laid with five single

chopsticks.

• A philosopher may pick up only one chopstick at a time. (Obviously, he/she

cannot pick up a chopstick that is already in the hand of a neighbor).

• From time to time, a philosopher gets hungry and tries to pick up the two

chopsticks that are closest to his/her (the chopsticks that are between his/her

and his/her left and right neighbors).

• The problem is how to choose two chopsticks (one his/her own and one of

other)

Operating Systems with Linux (MCA-105)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61

Dining-Philosophers Problem - Solution

• The Dining-Philosopher Problem is a simple representation of the need

to allocate several resources among several processes in a deadlock-free

and starvation-free manner.

• The problem can be solved by representing each chopstick with a

semaphore.

 A philosopher tries to grab a chopstick by executing a wait() operation on

that semaphore.

 He/she releases his/her chopsticks by executing the signal() operation on

the appropriate semaphores.

 semaphore chopstick[5] = 1;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62

Dining-Philosophers Problem - Solution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63

Limitations of Solution

• Although this solution guarantees that no two neighbors are eating

simultaneously, but it could create a deadlock.

 Suppose that all five philosophers become hungry simultaneously and each grabs

her left chopstick.

 All the elements of chopstick will now be equal to 0.

 When each philosopher tries to grab her right chopstick, she will be delayed

forever.

• Possible Solutions:

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.1

Operating Systems with Linux

(MCA-105)

Unit - 2

by

Dr. Sunil Pratap Singh
(Associate Professor, BVICAM, New Delhi)

2023

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.2

CPU Scheduling

 The objective of multiprogramming is to have some process running at

all times.

 A process is executed until it must wait, typically for the completion of

some I/O request.

 When one process has to wait, the operating system takes the CPU away

from that process and gives the CPU to another process.

 Every time one process has to wait, another process can take over use of

the CPU.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.3

CPU-I/O Burst Cycle

 Process execution consists of a cycle of

CPU execution and I/O wait.

 Processes alternate between these two

states.

 Process execution begins with a CPU

burst.

 That is followed by an I/O burst, which

is followed by another CPU burst, then

another I/O burst, and so on.

• Eventually, the final CPU burst ends

with a system request to terminate

execution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.4

CPU-I/O Burst Cycle (contd…)

 The durations of CPU bursts vary greatly from process to process and

from computer to computer.

 However, it tend to have a following frequency curve:

o This curve is generally characterized as exponential, with a large number of short CPU

bursts and a small number of long CPU bursts.

• An I/O-bound program typically

has many short CPU bursts.

• A CPU-bound program might have

a few long CPU bursts.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.5

CPU Scheduler

 Whenever the CPU becomes idle, the operating system must select one

of the processes in the ready queue to be executed.

 The selection process is carried out by the short-term scheduler (or CPU

scheduler).

 The scheduler selects a process from the processes in memory that are

ready to execute and allocates the CPU to that process.

 The ready queue is not necessarily a first-in, first-out (FIFO) queue.

 The records in the queues are generally PCBs of the processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.6

Circumstances for Scheduling Decisions

 CPU-scheduling decisions may take place under the following circumstances:

1. When a process switches from the running state to the waiting state (for example, as the

result of an I/O request or an invocation of wait for the termination of one of the child

processes).

2. When a process switches from the running state to the ready state (for example, when

an interrupt occurs).

3. When a process switches from the waiting state to the ready state (for example, at

completion of I/O).

4. When a process terminates.

 For situations 1 and 4, there is no choice in terms of scheduling.

• A new process (if one exists in the ready queue) must be selected for execution.

• There is a choice, however, for situations 2 and 3.

 When scheduling takes place only under circumstances 1 and 4, scheduling

scheme is called non-preemptive; otherwise, it is preemptive.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.7

Preemptive and Non-Preemptive Scheduling

 Non-Preemptive Scheduling

 The CPU is allocated to the process till it terminates or switches to waiting

state.

 This scheduling method was used by Microsoft Windows 3.x.

 Preemptive Scheduling

 The CPU is allocated to the processes for the limited time.

 Windows 95 introduced preemptive scheduling, and all subsequent versions of

Windows operating systems have used preemptive scheduling.

 The Mac OS X operating system for the Macintosh also uses preemptive

scheduling.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.8

Preemptive vs. Non-Preemptive Scheduling

Preemptive Scheduling Non-Preemptive Scheduling

The CPU is allocated to the processes for

the limited time.

The CPU is allocated to the process till it

terminates or switches to waiting state.

Processor can be preempted to execute a

different process in the middle of execution

of any current process.

Once Processor starts to execute a process

it must finish it before executing the other. It

cannot be paused in middle.

CPU utilization is more as compared to Non-

Preemptive Scheduling.

CPU utilization is less as compared to

Preemptive Scheduling.

Waiting time and Response time is less. Waiting time and Response time is more.

If a high priority process frequently arrives in

the ready queue, low priority process may

starve.

If a process with long burst time is running

CPU, then another process with less CPU

burst time may starve.

Preemptive scheduling is flexible. Non-preemptive scheduling is rigid.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.9

Dispatcher

 The dispatcher (a component of CPU-scheduling function) gives control

of the CPU to the process selected by the short-term scheduler.

 The functions of dispatcher involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart the program

• The dispatcher should be as fast as possible, since it is invoked during

every process switch.

• The time taken by dispatcher to stop one process and start another

running is known as the dispatch latency.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.10

Scheduling Criteria

 CPU Utilization

• We want to keep the CPU as busy as possible. CPU utilization can range

from 0 to 100 percent.

 Throughput

• If the CPU is busy executing processes, then work is being done.

Throughput refers to the number of processes completed per time unit.

 Turnaround Time

• The interval from the time of submission of a process to the time of

completion is called turnaround time.

• Turnaround time is the sum of the periods spent waiting to get into

memory, waiting in the ready queue, executing on the CPU, and doing I/O.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.11

Scheduling Criteria (contd…)

 Response Time

• In an interactive system, turnaround time may not be the best criterion.

• Response time is the time it takes to start responding, not the time it takes

to output the response.

• It is desirable to:

• Maximize CPU utilization and throughput

• Minimize turnaround time, waiting time and response time

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.12

Scheduling Algorithms

 First-Come, First-Served Scheduling

 Shortest-Job-First Scheduling

 Priority Scheduling

 Round-Robin Scheduling

 Multilevel Queue Scheduling

 Multilevel Feedback Queue Scheduling

Refer to PDF File

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 1 of 7

First-Come, First-Served Scheduling

 The process that requests the CPU first is allocated the CPU first.

 The implementation of the FCFS policy is managed with a FIFO queue.

 When a process enters the ready queue, its PCB is linked onto the tail of the queue.

 When the CPU is free, it is allocated to the process at the head of the queue.

 The running process is then removed from the queue.

Example: Consider the following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds:

Process : P1 P2 P3

Burst Time : 24 3 3

 If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result shown in

the following Gantt Chart:

Waiting Time for P1 = 0 Millisecond

Waiting Time for P2 = 24 Milliseconds

Waiting Time for P3 = 27 Milliseconds

Average Waiting Time = (0 + 24 + 27)/3 = 17 Milliseconds

 If the processes arrive in the order P2, P3, P1, and are served in FCFS order, we get the result shown in

the following Gantt Chart:

Waiting Time for P1 = 6 Milliseconds

Waiting Time for P2 = 0 Millisecond

Waiting Time for P3 = 3 Milliseconds

Average Waiting Time = (6 + 0 + 3)/3 = 3 Milliseconds

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 2 of 7

 The average waiting time under an FCFS policy is generally not minimal and may vary substantially

if the processes’ CPU burst times vary greatly.

 The FCFS scheduling algorithm is non-preemptive.

 Once the CPU has been allocated to a process, that process keeps the CPU until it releases the

CPU, either by terminating or by requesting I/O.

 The FCFS algorithm is particularly troublesome for time-sharing systems, where it is important

that each user get a share of the CPU at regular intervals.

Shortest-Job-First Scheduling

 This algorithm associates, with each process, the length of the process’s next CPU burst.

 When the CPU is available, it is assigned to the process that has the smallest next CPU burst.

 If the next CPU bursts of two processes are the same, FCFS scheduling is used to break the tie.

 A more appropriate term for this scheduling method would be the shortest-next-CPU-burst

algorithm, because scheduling depends on the length of the next CPU burst of a process, rather than

its total length.

Example: Consider the following set of processes, with the length of the CPU burst given in milliseconds:

Process : P1 P2 P3 P4

Burst Time : 6 8 7 3

 Using SJF scheduling, we would schedule these processes according to the following Gantt chart:

Waiting Time for P1 = 3 Milliseconds

Waiting Time for P2 = 16 Milliseconds

Waiting Time for P3 = 9 Milliseconds

Waiting Time for P4 = 0 Millisecond

Average Waiting Time = (3 + 16 + 9 + 0)/4 = 7 Milliseconds

If we use FCFS scheduling scheme, the average waiting time would be 10.25 milliseconds.

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 3 of 7

 The SJF scheduling gives the minimum average waiting time for a given set of processes.

 The real difficulty with the SJF algorithm is to know the length of the next CPU request.

 SJF scheduling is used frequently in long-term scheduling.

 For long-term (job) scheduling in a batch system, we can use the length as the process time limit

that a user specifies when he submits the job.

 Thus, users are motivated to estimate the process time limit accurately, since a lower value may

mean faster response. (Too low a value will cause a time-limit-exceeded error and require

resubmission.)

 SJF scheduling is used frequently in long-term scheduling.

 Although the SJF algorithm is optimal, it cannot be implemented at the level of short-term CPU

scheduling.

 With short-term scheduling, there is no way to know the length of the next CPU burst.

 One approach is to try to approximate SJF scheduling – We expect that the next CPU burst will

be similar in length to the previous ones.

 The SJF algorithm can be either preemptive or non-preemptive.

 The choice arises when a new process arrives at the ready queue while a previous process is still

executing.

 The next CPU burst of the newly arrived process may be shorter than what is left of the currently

executing process.

 Preemptive SJF scheduling is sometimes called shortest-remaining-time-first scheduling.

Example of Preemptive SJF Scheduling: Consider the following set of processes, with the length of the

CPU burst given in milliseconds:

Process : P1 P2 P3 P4

Arrival Time : 0 1 2 3

Burst Time : 8 4 9 5

 If the processes arrive at the ready queue at the times shown and need the indicated burst times, then the

resulting preemptive SJF schedule is as depicted in the following Gantt Chart:

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 4 of 7

Waiting Time for P1 = 10 – 1 = 9 Milliseconds

Waiting Time for P2 = 1 – 1 = 0 Millisecond

Waiting Time for P3 = 17 – 2 = 15 Milliseconds

Waiting Time for P4 = 5 – 3 = 2 Milliseconds

Average Waiting Time (Preemptive Scheduling) = (9 + 0 + 15 + 2)/4 = 6.5 Milliseconds

Average Waiting Time (Non-Preemptive Scheduling) = 7.75 Milliseconds

Priority Scheduling

 The SJF algorithm is a special case of the general priority scheduling algorithm.

 A priority is associated with each process, and the CPU is allocated to the process with the highest

priority.

 Equal-priority processes are scheduled in FCFS order.

 An SJF algorithm is simply a priority algorithm where the priority (p) is the inverse of the

(predicted) next CPU burst. The larger the CPU burst, the lower the priority, and vice versa.

 Some systems use low numbers to represent low priority; others use low numbers for high priority.

 We assume that low numbers represent high priority.

Example: Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, · ·,

P5, with the length of the CPU burst given in milliseconds:

Process : P1 P2 P3 P4 P5

Burst Time : 10 1 2 1 5

Priority : 3 1 4 5 2

 Using priority scheduling, the processes are scheduled according to the following Gantt Chart:

Waiting Time for P1 = 6 Milliseconds

Waiting Time for P2 = 0 Millisecond

Waiting Time for P3 = 16 Milliseconds

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 5 of 7

Waiting Time for P4 = 18 Milliseconds

Waiting Time for P5 = 1 Millisecond

Average Waiting Time = (6 + 0 + 16 + 18 + 1)/5 = 8.2 Milliseconds

 Priorities can be defined either internally or externally.

 Internally defined priorities use some measurable quantity or quantities to compute the priority of

a process.

 For example, time limits, memory requirements, the number of open files, and the ratio of

average I/O burst to average CPU burst have been used in computing priorities.

 External priorities are set by criteria outside the operating system, such as the importance of the

process, the type and amount of funds being paid for computer use.

 Priority scheduling can be either preemptive or non-preemptive.

 When a process arrives at the ready queue, its priority is compared with the priority of the

currently running process.

 A preemptive priority scheduling algorithm will preempt the CPU if the priority of the newly

arrived process is higher than the priority of the currently running process.

 A non-preemptive priority scheduling algorithm will simply put the new process at the head of

the ready queue.

 A major problem with priority scheduling algorithms is indefinite blocking, or starvation.

 A priority scheduling algorithm can leave some low priority processes waiting indefinitely.

 A solution to the problem of indefinite blockage of low-priority processes is aging.

 Aging is a technique of gradually increasing the priority of processes that wait in the system for a

long time.

 For example, if priorities range from 127 (low) to 0 (high), we could increase the priority of a

waiting process by 1 every 15 minutes.

Round-Robin Scheduling

 The round-robin (RR) scheduling algorithm is designed especially for time-sharing systems.

 It is similar to FCFS scheduling, but preemption is added to enable the system to switch between

processes.

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 6 of 7

 A small unit of time, called a time quantum or time slice, is defined.

 A time quantum is generally from 10 to 100 milliseconds in length.

 The ready queue is treated as a circular queue.

 The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time

interval of up to 1 time quantum.

 New processes are added to the tail of the ready queue (FCFS).

 The CPU scheduler picks the first process from the ready queue, sets a timer to interrupt after 1 time

quantum, and dispatches the process.

Example: Consider the following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds:

Process : P1 P2 P3

Burst Time : 24 3 3

Time Quantum = 4 Milliseconds

 Using RR scheduling (with time quantum of 4 milliseconds), the processes are scheduled according to

the following Gantt Chart:

Waiting Time for P1 = (10 – 4) = 6 Milliseconds

Waiting Time for P2 = 4 Millisecond

Waiting Time for P3 = 7 Milliseconds

Average Waiting Time = (6 + 4 + 7)/3 = 5.66 Milliseconds

 In the RR scheduling algorithm, no process is allocated the CPU for more than 1 time quantum in a

row (unless it is the only runnable process).

 If a process’s CPU burst exceeds 1 time quantum, that process is preempted and is put back in the

ready queue.

 The RR scheduling algorithm is thus preemptive.

 The performance of the RR algorithm depends heavily on the size of the time quantum.

Lecture Notes – Operating Systems with Linux

Bharati Vidyapeeth's Institute of Computer Applications and Management - New Delhi, by Dr. Sunil Pratap Singh
Page 7 of 7

 If the time quantum is extremely large, the RR policy is the same as the FCFS policy.

 If the time quantum is extremely small (say, 1 millisecond), the RR approach is called processor

sharing.

 We need also to consider the effect of context switching on the performance of RR scheduling.

 In practice, most modern systems have time quantum ranging from 10 to 100 milliseconds.

 The time required for a context switch is typically less than 10 microseconds.

Question 1: Consider the following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds:

Process : P1 P2 P3 P4 P5

Burst Time : 5 24 16 10 3

Determine the average waiting time, average turnaround time and throughput using First-Come, First Served

and Shortest Job First scheduling.

Question 2: Consider the following set of processes that arrive at time 0, with the length of the CPU burst

given in milliseconds:

Process : P1 P2 P3

Burst Time : 30 6 8

Determine the average waiting time, average turnaround time and throughput using Round Robin

scheduling. Assume time quantum = 5 milliseconds.

Question 3: Consider the following set of processes with the length of the CPU burst given in milliseconds:

Process : P1 P2 P3 P4 P5

Burst Time : 3 6 4 5 2

Arrival Time : 0 2 4 6 8

Determine the average waiting time, average turnaround time and throughput using Shortest Remaining

Time First scheduling.

Question 4: Consider the following set of processes with the length of the CPU burst given in milliseconds:

Process : P1 P2 P3 P4 P5

Burst Time : 6 12 1 3 4

Priority : 2 4 5 1 3

Determine the average waiting time, average turnaround time and throughput using Priority scheduling.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.13

Multilevel Queue Scheduling

 The processes can be classified into different groups where each group has its

own scheduling needs.

 A common classification is:

 Foreground (Interactive) Processes

 Background Processes

 These two types of processes have different requirements and so may have

different scheduling needs.

 A multilevel queue scheduling algorithm partitions the ready queue into

several separate queues.

 The processes are permanently assigned to one queue, generally based on some

property of the process, such as memory size, process priority, or process type.

 Each queue has its own scheduling algorithm.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.14

Multilevel Queue Scheduling (contd…)

 Separate queues might be used for different categories of processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.15

Multilevel Queue Scheduling (contd…)

 Scheduling among the queues is commonly implemented as fixed-

priority preemptive scheduling.

 Each queue has absolute priority over lower-priority queues.

 For example, no process in the batch queue, could run unless the queues for

system processes, interactive processes, and interactive editing processes were

all empty.

 If an interactive editing process entered the ready queue while a batch process

was running, the batch process would be preempted.

• Another possibility is to time-slice among the queues.

 Each queue gets a certain portion of the CPU time, which it can then schedule

among its various processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.16

Multilevel Queue Scheduling: Example

 Process : P1 P2 P3 P4

 Arrival Time : 0 0 0 10

 Burst Time : 4 3 8 5

 Queue No. : 1 1 2 1

 Priority of Queue 1 is greater than Queue 2.

 Queue 1 uses Round Robin (Time Quantum = 2) and Queue 2 uses First-Come, First-Served.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.17

Questions

• Three process P1, P2 and P3 arrive at time zero. The total time spent by

the process in the system is 10ms, 20ms, and 30ms respectively. They

spent first 20% of their execution time in doing I/O and the rest 80% in

CPU processing. What is the percentage utilization of CPU using FCFS

scheduling algorithm?

• Three process p1, P2 and P3 arrive at time zero. Their total execution

time is 10ms, 15ms, and 20ms respectively. They spent first 20% of

their execution time in doing I/O, next 60% in CPU processing and the

last 20% again doing I/O. For what percentage of time was the CPU

free? Use Round robin algorithm with time quantum 5ms.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.18

Multilevel Feedback Queue Scheduling

 The multilevel feedback queue scheduling algorithm allows a process to

move between queues.

 The idea is to separate processes according to the characteristics of their

CPU bursts.

 If a process uses too much CPU time, it will be moved to a lower-priority

queue.

 A process that waits too long in a lower-priority queue may be moved to a

higher-priority queue.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.19

Multilevel Feedback Queue Scheduling

 A process entering the ready queue is put in

Queue 0.

 A process in Queue 0 is given a time

quantum of 8 milliseconds. If it does not

finish within this time, it is moved to the tail

of Queue 1.

 If Queue 0 is empty, the process at the head

of Queue 1 is given a quantum of 16

milliseconds. If it does not complete, it is

preempted and is put into Queue 2.

 Processes in Queue 2 are run on an FCFS

basis but are run only when Queues 0 and 1

are empty.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.20

Process Synchronization: Background

• Both, the producer and consumer routines are correct separately.

• They may not function correctly when executed concurrently.

Producer

Consumer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.21

Process Synchronization: Background

 An incorrect state may arrive because both processes are allowed to

manipulate the variable counter concurrently.

 A situation, where several processes access and manipulate the same

data concurrently and the outcome of the execution depends on the

particular order in which the access takes place, is called a race

condition.

 In our example, to guard against the race condition, we need to ensure

that only one process at a time can manipulate the variable counter.

 To make such a guarantee, the processes must be synchronized in

some way.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.22

The Critical-Section Problem

 Consider a system consisting of n processes {P0, P1, ..., Pn−1}.

 Each process has a segment of code, called a critical section, in which

the process may be changing common variables, updating a table, etc.

 When one process is executing in its critical section, no other process is

to be allowed to execute in its critical section.

 No two processes are executing in their critical sections at the same time.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.23

The Critical-Section Problem (contd…)

 The solution of critical-section problem involves design of a protocol that the

processes can use to cooperate.

 Each process must request permission to enter its critical section.

 The section of code implementing this request is the entry section.

 The critical section may be followed by an exit section.

 The remaining code is the remainder section.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.24

Solution of Critical-Section Problem

 A solution to the critical-section problem must satisfy the following

three requirements:

 Mutual Exclusion - If process Pi is executing in its critical section, then no other

processes can be executing in their critical sections.

 Progress - If no process is executing in its critical section and some processes

wish to enter their critical sections, then only those processes that are not

executing in their remainder sections should decide which will enter its critical

section next, in a finite time.

 Bounded Waiting - After a process makes a request for getting into its critical

section, there is a limit for how many other processes can get into their

critical section, before this process's request is granted. So after the limit is

reached, system must grant the process permission to get into its critical

section.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.25

Critical Section Problem: Algorithm 1

This algorithm works only for two processes.

turn = i;

do{

 while(turn!=i); <-- ENTRY SECTION

 CRITICAL SECTION

 turn = j; <-- EXIT SECTION

 REMAINDER SECTION

}while(TRUE);

Given: int turn; (Shared Variable)

Process Pi

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.26

Critical Section Problem: Algorithm 1 (contd…)

This algorithm does not satisfy the progress requirement because there is strict

alternation between the processes.

turn = i;

do{

 while(turn!=i);

 CRITICAL SECTION

 turn = j;

 REMAINDER SECTION

}while(TRUE);

Given: int turn; (Shared Variable)

Process Pi Process Pj

turn = j;

do{

 while(turn!=j);

 CRITICAL SECTION

 turn = i;

 REMAINDER SECTION

}while(TRUE);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.27

Critical Section Problem: Algorithm 2

This algorithm also works only for two processes.

do{

 flag[i] = TRUE;

 while(flag[j]); <-- ENTRY SECTION

 CRITICAL SECTION

 flag[i] = FALSE; <-- EXIT SECTION

 REMAINDER SECTION

}while(TRUE);

Given: boolean flag[2]; flag[0] = FALSE; flag[1] = FALSE;

Process Pi

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.28

Critical Section Problem: Algorithm 2 (contd…)

This algorithm can fail the progress requirement if both processes set their flags to

true and then both execute the while loop.

do{

 flag[i] = TRUE;

 while(flag[j]);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

}while(TRUE);

Process Pi Process Pj

do{

 flag[j] = TRUE;

 while(flag[i]);

 CRITICAL SECTION

 flag[j] = FALSE;

 REMAINDER SECTION

}while(TRUE);

Given: boolean flag[2]; flag[0] = FALSE; flag[1] = FALSE;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.29

Critical Section Problem: Peterson’s Solution

 Peterson’s Solution is a classical software based solution to the critical

section problem.

 Peterson’s algorithm is used to synchronize two processes.

 Peterson’s solution requires the two processes to share two data items:

 int turn;

 boolean flag[2];

 Variable turn indicates whose turn it is to enter its critical section.

o If turn == i, then process Pi is allowed to execute in its critical section.

 Flag array is used to indicate if a process wants to enter its critical section.

o If flag[i] == true, it indicates that Pi wants to enter its critical section.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.30

Structure of Process Pi in Peterson’s Solution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.31

Structure of Process Pi and Pj

• Peterson’s algorithm satisfy the three requirements (mutual exclusive, progress,

bounded waiting) of solution of critical section problem.

do {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] == TRUE && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE

 REMAINDER SECTION

}while(TRUE);

do {

 flag[j] = TRUE;

 turn = i;

 while (flag[i] == TRUE && turn == i);

 CRITICAL SECTION

 flag[j] = FALSE

 REMAINDER SECTION

}while(TRUE);

Process Pi Process Pj

Given: boolean flag[2]; int turn; flag[0]=false; flag[1]=false;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.32

Limitations of Peterson’s Solution

• Works only for TWO Processes.

• Busy Waiting

 Busy waiting, also known as spinning, or busy looping is a process synchronization

technique in which a process/task waits and constantly checks for a condition to be

satisfied before proceeding with its execution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.33

Waiting Approaches

• There are two general approaches to waiting in operating systems:

 Busy Waiting - A process/task can continuously check for the condition to be

satisfied while consuming the processor.

 Sleeping (Blocked Waiting or Sleep Waiting) - A process can wait without

consuming the processor. In such a case, the process/task is alerted or

awakened when the condition is satisfied.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.34

Busy Waiting

• Busy looping is usually used to achieve mutual exclusion in operating

systems.

• Busy waiting can be inefficient because the looping procedure is a waste of

computer resources

• Although inefficient, busy waiting can be beneficial in mutual exclusion if the

waiting time is short and insignificant.

• Additionally, busy waiting is quick and simple to understand and implement.

• A workaround solution for the inefficiency of busy waiting that is

implemented in most operating systems is the use of a delay function.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.35

Sleep Waiting

• In this case, the process/task is alerted or awakened when the condition is

satisfied.

• A delay function (sleep system call) places the process involved in busy

waiting into an inactive state for a specified amount of time.

• In this case, resources are not wasted as the process is “asleep”.

• After the sleep time has elapsed, the process is awakened to continue its

execution.

• If the condition is still not satisfied, the sleep time is incremented until the

condition can be satisfied.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.36

Bakery Algorithm

 Bakery Algorithm is a critical section solution for n processes.

 Each process, wanting to enter critical section, gets a token number.

 The token numbering scheme always generates numbers in increasing

order of enumeration; i.e., 1, 2, 3, 3, 4, 5, …

 A process with lowest token number will enter the critical section.

 The algorithm preserves the first come first serve property.

 If two processes have same token number, the process with lower

process id (PId) will enter the critical section.

 The token number of process is set to 0 when it finishes execution.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.37

Bakery Algorithm: Structure of Process Pi

do {

 choosing[i] = TRUE;

 number[i] = MAX(number[0], number[1], ..., number[n-1]) + 1;

 choosing[i] = FALSE;

 for (j = 0; j < n; j++) {

 while (choosing[j]);

 while ((number[j] != 0) && ((number[j],j) < (number[i],i));

 }

 CRITICAL SECTION

 number[i] = 0;

 REMAINDER SECTION

}while(TRUE);

Process Pi

boolean choosing[N] = {FALSE, ..., FALSE};

int number[N] = {0, ..., 0};

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.38

Solution using Lock

do {

 while (Lock != 0);

 Lock = 1;

 CRITICAL SECTION

 Lock = 0;

 REMAINDER SECTION

}while(TRUE);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.39

Synchronization Hardware

 Uniprocessor Environment

 Critical-section problem could be solved if interrupts could be prevented

from occurring (while a shared variable was being modified).

o This is often the approach taken by non-preemptive kernels.

 Multiprocessor Environment

 Disabling interrupts on a multiprocessor can be time consuming.

 With special atomic hardware instructions, solution of critical-section

problem can be done.

o TestAndSet()

o Swap()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.40

TestAndSet()
Definition of TestAndSet()

Implementation of TestAndSet()

This algorithm satisfies the
mutual-exclusion requirement,
but do not satisfy the bounded-
waiting requirement.

It is executed atomically
(that is, as one
uninterruptible unit)

If two TestAndSet() instructions are executed simultaneously (each on a different CPU),
they will be executed sequentially in some arbitrary order.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.41

Swap
Definition of Swap()

Implementation of Swap()

This algorithm satisfies the
mutual-exclusion requirement,
but do not satisfy the bounded-
waiting requirement.

It is executed atomically
(that is, as one
uninterruptible unit)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.42

Semaphore

 In 1965, proposed by Dijkstra, Semaphore is a mechanism that can be used

to provide synchronization of tasks (to solve critical-section problem).

 A semaphore S is an integer variable that, apart from initialization, is

accessed only through two standard atomic operations: wait() and signal().

 The initial value of S depends on how many processes are allowed in CS.

wait(S)

{

 while(S <= 0);

 S--;

}

wait()

signal(S)

{

 S++;

}

signal()

The testing of the integer
value of S (S ≤ 0), as well
as its possible
modification (S--), must
be executed without
interruption.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.43

Types of Semaphores

 Binary Semaphore

• It is a special form of semaphore used for implementing mutual exclusion,

hence it is often called a Mutex Lock.

• A binary semaphore is initialized to 1 and only takes the values 0 and 1

during execution of a program.

• It can be used to deal with the critical-section problem for multiple

processes.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.44

Types of Semaphores

• Counting Semaphore

 Counting semaphores can be used to control access to a given resource

consisting of a finite number of instances.

 It is initialized to the number of resources available.

 Each process that wishes to use a resource performs a wait() operation on

the semaphore (decrementing the count).

 When a process releases a resource, it performs a signal() operation

(incrementing the count).

 When the count for the semaphore goes to 0, all resources are being used.

After that, processes that wish to use a resource will block until the count

becomes greater than 0.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.45

Implementation of Semaphore

Mutual-Exclusion Implementation with Semaphores

• The main disadvantage of the semaphore definition given here is that

it requires busy waiting.

 While a process is in its critical section, any other process that tries to

enter its critical section must loop continuously in the entry code.

do{

 wait(S);

 CRITICAL SECTION

 signal(S);

 REMAINDER SECTION

}while(TRUE)

wait(S){

 while(S <= 0);

 S--;

}

signal(S){

 S++;

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.46

Spinlock

• Busy waiting wastes CPU cycles that some other process might be able

to use productively.

• The semaphore having busy waiting mechanism is also called a spinlock

because the process “spins” while waiting for the lock.

• Spinlock mechanism has an advantage in that no context switch is

required when a process waits on a lock

 When locks are expected to be held for short times, spinlocks are useful.

 Spinlocks are often employed on multiprocessor systems where one thread

can “spin” on one processor while another thread performs its critical

section on another processor.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.47

Solution of Spinlock (Busy Waiting)

• To overcome the need for busy waiting, we can modify the definition of

the wait() and signal() semaphore operations.

• When a process executes the wait() operation and finds that the

semaphore value is not positive, it must wait.

 However, rather than engaging in busy waiting, the process can block itself.

 The block operation places a process into a waiting queue associated with

the semaphore, and the state of the process is switched to the waiting

state. Then control is transferred to the CPU scheduler, which selects

another process to execute.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.48

Solution of Spinlock (Busy Waiting)

• To overcome the need for busy waiting, we can modify the definition of

the wait() and signal() semaphore operations.

The block() operation

suspends the process that

invokes it. The wakeup(P)

operation resumes the

execution of a blocked process

P. These two operations are

provided by the operating

system as basic system calls.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.49

Solution of Spinlock (Busy Waiting)

• In the solution of busy waiting, semaphore values may be negative.

• Semaphore values are never negative under the classical definition of

semaphores with busy waiting.

• If a semaphore value is negative, its magnitude is the number of

processes waiting on that semaphore.

• The list of waiting processes can be easily implemented by a link field in

each process control block (PCB).

• To ensure bounded waiting, a FIFO queue or any other queuing strategy

may be used.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.50

Limitations of Semaphores

• Deadlocks

 Consider a system consisting of two processes, P0 and P1, each accessing

two semaphores, S and Q, set to the value 1:

• Suppose that P0 executes wait(S)

and then P1 executes wait(Q).

• When P0 executes wait(Q), it must

wait until P1 executes signal(Q).

• Similarly, when P1 executes wait(S),

it must wait until P0 executes

signal(S).

• Since these signal() operations

cannot be executed, P0 and P1 are

deadlocked.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.51

Limitations of Semaphores

• Indefinite Blocking or Starvation

 Indefinite blocking may occur if we remove processes from the list

associated with a semaphore in LIFO (last-in, first-out) order.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.52

Classic Problems of Synchronization

 Bounded-Buffer Problem

 Readers–Writers Problem

 Dining-Philosophers Problem

Solution using Semaphore

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.53

Bounded-Buffer Problem

• The bounded-buffer problem is also known as producer-consumer problem.

• Both, the producer and consumer routines are correct separately.

• They may not function correctly when executed concurrently.

Producer

Consumer

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.54

Bounded-Buffer Problem - Solution

• Assume,

 Buffer Size = n slots

 semaphore mutex (for mutual exclusion)

mutex = 1

 semaphore empty (number of empty slots in buffer)

empty = n

 semaphore full (number of full slots in buffer)

 full = 0

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.55

Bounded-Buffer Problem - Solution

Producer Process Consumer Process

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.56

Readers–Writers Problem

• Consider a situation where a shared resource (such as file or dataset) is

to be accessed by multiple concurrent processes.

• Some of these processes may want only to read the database, whereas

others may want to update (that is, to read and write) the database.

• We distinguish between these two types of processes - reader and

writer.

 If two readers access the shared data simultaneously, no adverse effects

will result.

 If a writer and some other process (either a reader or a writer) access the

database simultaneously, inconsistency may occur.

• This synchronization problem is referred to as the readers–writers problem.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.57

Readers–Writers Problem - Solution

• Assume,

 int readcount = 0

The readcount variable keeps track of how many processes are currently reading

the object.

 semaphore mutex

mutext is used for mutual exclusion when the variable readcount is updated.

mutex = 1

 semaphore wrt

wrt functions as a mutual-exclusion semaphore for the writers.

wrt = 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.58

Readers–Writers Problem - Solution

Write Process(s) Reader Process(s)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.59

Dining-Philosophers Problem

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.60

Dining-Philosophers Problem

• Consider a situation where five philosophers share a circular table surrounded

by five chairs, each belonging to one philosopher.

• They are in thinking-eating cycle.

• In the center of the table is a bowl of rice, and the table is laid with five single

chopsticks.

• A philosopher may pick up only one chopstick at a time. (Obviously, he/she

cannot pick up a chopstick that is already in the hand of a neighbor).

• From time to time, a philosopher gets hungry and tries to pick up the two

chopsticks that are closest to his/her (the chopsticks that are between his/her

and his/her left and right neighbors).

• The problem is how to choose two chopsticks (one his/her own and one of

other)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.61

Dining-Philosophers Problem - Solution

• The Dining-Philosopher Problem is a simple representation of the need

to allocate several resources among several processes in a deadlock-free

and starvation-free manner.

• The problem can be solved by representing each chopstick with a

semaphore.

 A philosopher tries to grab a chopstick by executing a wait() operation on

that semaphore.

 He/she releases his/her chopsticks by executing the signal() operation on

the appropriate semaphores.

 semaphore chopstick[5] = 1;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.62

Dining-Philosophers Problem - Solution

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63 © Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Sunil Pratap Singh U2.63

Limitations of Solution

• Although this solution guarantees that no two neighbors are eating

simultaneously, but it could create a deadlock.

 Suppose that all five philosophers become hungry simultaneously and each grabs

her left chopstick.

 All the elements of chopstick will now be equal to 0.

 When each philosopher tries to grab her right chopstick, she will be delayed

forever.

• Possible Solutions:

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available.

