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Poset
Suppose R is a relation on set S which satisfy the following
properties

(Reflexive) for any a  S we have aRa
(Antisymmetric) if aRb and bRa then a=b
(Transitive) if aRb and bRc then aRc.

Then this relation R is called partial order relation and the set S
is called partially ordered set or POSET. A partial order relation
is usually denoted by the symbol ≤
Means (S , ≤ ) is a partially ordered set.
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Comparable elements

Two elements x, y in a partially ordered set (A, ≤ ) are said to be 
comparable if  either x ≤ y or y ≤ x 

Uncomparable elements

Two elements x, y in a partially ordered set (A, ≤ ) are said to 
be uncomparable if 

x ≤ y or y ≤ x both do not hold

Ex  in the poset (z+ , /) are the integers 3 and 9 comparable? 
Are 5 and 7 comparable

Yes 3 and 9 are comparable but 5 and 7 and 7 and 5 are not
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If (S , ≤ ) is a poset and every two element of a set are comparable
then S Is called totally ordered set or linearly ordered set.Totally
ordered set is also known as chain.

Ex the poset (Z , ≤) is a totally ordered set

Totally Ordered Set
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Hasse Diagram Of A Poset

If (S, ≤ ) is a poset then its hasse diagram is drawn as follows

The element of S are represented by dots

Since a partial order is reflexive , hence each vertex of A must be
related to itself , so the edges from a vertex to itself are deleted in
hasse diagram.

Since a partial order is transitive , hence whenever aRb and bRc
we have aRc. Eliminate all edges that are implied by the
transitive property .

If a vertex’a’ is connected to vertex ‘b’ by an edge i.e. aRb then
vertex b appears above vertex ‘a’ . Therefore arrows may be
ommitted from the edges in hasse diagram.
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Q1 consider the set A= {k,l,m,n,p} and the corresponding relation 
R = { (k , k) (l,l) (m,  m) (n,n) (p,p) (k,m) (k,l) (k,n) (k,p) 
(m,n) (m,p) (n,p) (l,p)}

construct the directeg graph and corresponding hasse diagram.

Q2 let D= {1,2,4,5,10,20,25,50,100} and let the relation is for 
divisibility

Determine the GLB of B where B= {10,20}        

Determine the LUB of B where B= {10,20}

Determine the GLB of B where B= {5,10,20,25}

Determine the LUB of B where B= {5,10,20,25}
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Maximal And Minimul Element

An element of  a Poset is called maximal if it is not less than any 
element of the poset .

That is a is maximal in the poset  (S , ≤ ) if there is no b  S such 
that a<b 

A poset may have more than one maximal element.

An element of  a Poset is called minimal  if it is not greater  than 
any element of the poset .

That is a is minimal in the poset  (S , ≤ ) if there is no b  S such 
that b< a 

A poset may have more than one minimal element.

Maximum and minimum elements are easy to spot in hasse 
diagram they are top and bottom element .
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Greatest And Least Element

An element in a poset that is greater then every other element is 
called the greatest element . 

Greatest element is unique when it exists

An element is called least element if it is less then all other 
element in POSET

Least element is unique when it exists.
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Upper And Lower Bound

An element that is greater then all the elements in a subset A of a 
poset (S , ≤ ) .If u is an element of S such that a ≤ u for all 
elements a A then u is called an upper bound of A . 

An element that is less then all the elements in A if l is an element 
of S such that l ≤ a for all elements a A then l is called lower 
bound of A.  

LEAST UPPER BOUND AND GREATEST LOWER BOUND

The element x is called the least upper bound (SUPREMUM) of 
the subset A if x is an upper bound that is less the every other 
upper bound of A it is also calledit will be unique element

The element y is called the greatest lower bound (INFIMUM)of 
the subset A if y is a lower bound that is greater then every other 
lower bound of A it will be unique element.
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Isomorphic Ordered Set

If X and Y are partially ordered sets. A one to one function 
f:X---Y is called an isomorphic mapping from X in to Y if 
f preserves the ordered relation, means if the following two 
conditions are hold for any pair a and a’ in X:

If a ≤ a’ then f(a)≤ f(a)’
If a || a’ (noncomparable) then f(a) || f(b)
And if A and B are linearly ordered, then only (a) is needed 
for f to be an isomorphic mapping 

WELL ORDERED SET
A set (S , ≤ ) is a well ordered set if it is a poset such that ≤ 
is a total ordering and such that every non empty subset of S 
has a least element.
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LATTICES

A lattice is a partially ordered set (L, ≤ ) in which every pair of 
element a, b  L has a greatest lower bound and a least upper 
bound.

The greatest lower bound of a subset {a,b}  L will be 
denoted by a * b and the least upper bound by a  b . GLB 
{a,b}= a * b the meet or product of a and b, and the LUB {a, 
b} = a  b the join or sum of a and b.  
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Properties Of Lattices

If two binary operations of meet and join on a lattice (L, ≤ ) 
are denoted by * and  then for any a , b, c  L, we have 

a * a = a                               a  a = a                           
(idempotent law)

a * b = b* a                          a  b = b  a                   
(commutative law)

(a  * b) * c = a * (b*c)        (a  b)  c = a  (b  c)  
(associative law)

a * (a  b) = a                    a  (a * b)  = a                  
(absorption law)
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Bounded Lattice
In a bounded lattice (L, * ,  , 0 , 1) , an element b  L is 
called a complement of an element a  L if 

a * b  =  0     and      a  b = 1

Complemented Lattice
A lattice (L, *,  ,0 , 1) is said to be a complemented lattice if 
evewry element of L has atleast one complement.
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Boolean Algebra

Boolean Algebra named after 
George Boole who used it to 
study human logical 
reasoning – calculus of 
proposition.

Events : true or false

Connectives : a OR b; a AND b, 
NOT a

Example: Either “it has rained” 
OR “someone splashed 
water”, “must be tall” AND
“good vision

a b a AND b
F F F
F T F
T F F
T T T

a b a OR b
F F F
F T T
T F T
T T T

a NOT a
F T
T F
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Two-valued Boolean Algebra

Set of elements: {0,1}

Set of operations: { ., + , ¬ }

x y x . y 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

 

x y x + y
0 0 0
0 1 1
1 0 1
1 1 1

x ¬x
0 1
1 0

Signals: High = 5V = 1;  Low = 0V = 0

x

y
x.y

x

y
x+y x x'

Sometimes denoted by ’, 
for example a’
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Boolean Algebra Postulates

The set B contains at least two distinct elements x and y.

Closure: For every x, y in B,
 x + y is in B
 x . y is in B

Commutative laws: For every x, y in B,
 x + y = y + x 
 x . y = y . x 

A Boolean algebra consists of a set of elements B, with two binary 
operations {+} and {.} and a unary operation {'}, such that the 
following axioms hold:
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Associative laws: For every x, y, z in B,
 (x + y) + z = x + (y + z) = x + y + z
 (x . y) . z = x .( y . z) = x . y . z 

Identities (0 and 1):
 0 + x = x + 0 = x      for every x in B
 1 . x = x . 1 = x for every x in B

Distributive laws: For every x, y, z in B,
 x . (y + z) = (x . y) + (x . z) 
 x + (y . z) = (x + y) . (x + z) 

Complement: For every x in B, there exists an element x' in 
B such that
 x + x' = 1
 x . x' = 0

.
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Duality 

Duality Principle – every valid Boolean expression 
(equality) remains valid if the operators and identity 
elements are interchanged, as follows:

+  .
1  0

Example: Given the expression
a + (b.c) = (a+b).(a+c)

then its dual expression is
a . (b+c) = (a.b) + (a.c)
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Standard Forms

Certain types of Boolean expressions lead to gating networks 
which are desirable from implementation viewpoint.

Two Standard Forms: 

Sum-of-Products and Product-of-Sums

Literals: a variable on its own or in its complemented form.  
Examples:  x, x' , y, y'

Product Term: a single literal or a logical product (AND) of 
several literals. 

Examples:  x, x.y.z', A'.B, A.B, e.g'.w.v
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Standard Forms

Sum Term: a single literal or a logical sum (OR) of several 
literals.

Examples:  x, x+y+z', A'+B, A+B, c+d+h'+j

Sum-of-Products (SOP) Expression: a product term or a logical 
sum (OR) of several product terms.

Examples: x, x+y.z', x.y'+x'.y.z, A.B+A'.B', 
A + B'.C + A.C' + C.D

Product-of-Sums (POS) Expression: a sum term or a logical 
product (AND) of several sum terms.

Examples: x, x.(y+z'), (x+y').(x'+y+z), 
(A+B).(A'+B'), (A+B+C).D'.(B'+D+E')
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Standard Forms

Every Boolean expression can either be expressed as sum-of-
products or product-of-sums expression.

Examples:

SOP: x.y + x.y + x.y.z

POS: (x + y).(x + y).(x + z)
both: x + y + z or x.y.z
neither: x.(w + y.z) or z + w.x.y + v.(x.z + w)
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Minterm & Maxterm (1/3)
Consider two binary variables x, y.

Each variable may appear as itself or in complemented form as 
literals (i.e. x, x' & y, y' )

For two variables, there are four possible combinations with the 
AND operator, namely:

x'.y', x'.y, x.y', x.y

These product terms are called the minterms.

A minterm of n variables is the product of n literals from the 
different variables.
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Minterm & Maxterm

In general, n variables can give 2n minterms. 

In a similar fashion, a maxterm of n variables is the sum of n
literals from the different variables.

Examples: x'+y', x'+y, x+y',x+y

In general, n variables can give 2n maxterms.
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Minterm & Maxterm
The minterms and maxterms of 2 variables are denoted by m0 
to m3 and M0 to M3 respectively:

Minterms Maxterms 
x y term notation term notation 
0 0 x'.y' m0 x+y M0 
0 1 x'.y m1 x+y' M1 
1 0 x.y' m2 x'+y M2 
1 1 x.y m3 x'+y' M3 

 

 

Each minterm is the complement of the corresponding 
maxterm:

Example:  m2 = x.y'
m2' = (x.y')' = x' + (y')' = x'+y = M2
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Canonical Form: Sum of Minterms

What is a canonical/normal form?

 A unique form for representing something.

Minterms are product terms. 

 Can express Boolean functions using Sum-of-Minterms 
form.
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Canonical Form: Sum of Minterms

a) Obtain the truth table.  

Example:

x y z F 1 F 2 F 3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
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Canonical Form: Sum of Minterms

b) Obtain Sum-of-Minterms by gathering/summing the minterms 
of the function (where result is a 1)
F1 = x.y.z' = m(6)

F2 = x'.y'.z + x.y'.z' + x.y'.z + x.y.z' + x.y.z 
= m(1,4,5,6,7)

F3 = x'.y'.z + x'.y.z 
+ x.y'.z' +x.y'.z 

= m(1,3,4,5)

x y z F1 F2 F3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
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Canonical Form: Product of Maxterms

Maxterms are sum terms.

For Boolean functions, the maxterms of a function are the terms 
for which the result is 0.

Boolean functions can be expressed as Products-of-Maxterms. 
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Canonical Form: Product of Maxterms

E.g.:   F2 =  M(0,2,3) = (x+y+z).(x+y'+z).(x+y'+z') 

F3 = M(0,2,6,7)

=  (x+y+z).(x+y'+z).(x'+y'+z).(x'+y'+z') 

x y z F 1 F 2 F 3
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 0 1 0
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Canonical Form: Product of Maxterms

Why is this so? Take F2 as an example.

F2 = m(1,4,5,6,7)

The complement function of F2 is:

F2' = m(0,2,3) 

= m0 + m2 + m3 

(Complement functions’ minterms 
are the opposite of their original 
functions, i.e. when 
original function = 0)

x y z F 2 F 2 '
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0
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Canonical Form: Product of Maxterms

From previous slide, F2' = m0 + m2 + m3 

Therefore:

F2 = (m0 + m2 + m3 )'

= m0' . m2' . m3'              DeMorgan

= M0 . M2 . M3                 mx' = Mx

= M(0,2,3) 

Every Boolean function can be expressed as either Sum-of-
Minterms or Product-of-Maxterms.
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Conversion of Canonical Forms

Sum-of-Minterms   Product-of-Maxterms

 Rewrite minterm shorthand using maxterm shorthand.

 Replace minterm indices with indices not already used.

Eg: F1(A,B,C) =  m(3,4,5,6,7) =   M(0,1,2)

Product-of-Maxterms   Sum-of-Minterms

 Rewrite maxterm shorthand using minterm shorthand.

 Replace maxterm indices with indices not already used.

Eg: F2(A,B,C) = M(0,3,5,6) = m(1,2,4,7)
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Conversion of Canonical Forms

Sum-of-Minterms of F   Sum-of-Minterms of F'

 In minterm shorthand form, list the indices not already 
used in F.

Eg: F1(A,B,C) =  m(3,4,5,6,7)

F1'(A,B,C) = m(0,1,2)

Product-of-Maxterms of F   Prod-of-Maxterms of F'

 In maxterm shorthand form, list the indices not already 
used in F.

Eg: F1(A,B,C) = M(0,1,2)

F1'(A,B,C) = M(3,4,5,6,7)
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Conversion of Canonical Forms

Sum-of-Minterms of F   Product-of-Maxterms of F'

 Rewrite in maxterm shorthand form, using the same 
indices as in F.

Eg: F1(A,B,C) =  m(3,4,5,6,7)

F1'(A,B,C) = M(3,4,5,6,7)

Product-of-Maxterms of F   Sum-of-Minterms of F'

 Rewrite in minterm shorthand form, using the same 
indices as in F.

Eg: F1(A,B,C) = M(0,1,2)

F1'(A,B,C) = m(0,1,2)
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A two-variable function has four possible minterms. We can re-
arrange these minterms into a Karnaugh map.

Now we can easily see which minterms contain common literals.

 Minterms on the left and right sides contain y’ and y
respectively.

 Minterms in the top and bottom rows contain x’ and x
respectively.

x y minterm
0 0 x’y’
0 1 x’y
1 0 xy’
1 1 xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y

0 1
0 x’y’ x’y

X
1 xy’ xy

Y’ Y
X’ x’y’ x’y
X xy’ xy
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Karnaugh map simplifications

Imagine a two-variable sum of minterms:

x’y’ + x’y

Both of these minterms appear in the top row of a Karnaugh 
map, which means that they both contain the literal x’.

x’y’ + x’y = x’(y’ + y) [ Distributive 
]

= x’  1 [ y + y’ = 1 ]
= x’ [ x  1 = x ]

Y
x’y’ x’y

X xy’ xy
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More two-variable examples

Another example expression is x’y + xy.

 Both minterms appear in the right side, where y is 
uncomplemented.

 Thus, we can reduce x’y + xy to just y.

How about x’y’ + x’y + xy?

 We have x’y’ + x’y in the top row, corresponding to x’.

 There’s also x’y + xy in the right side, corresponding to y.

 This whole expression can be reduced to x’ + y.

Y
x’y’ x’y

X xy’ xy

Y
x’y’ x’y

X xy’ xy
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A three-variable Karnaugh map

For a three-variable expression with inputs x, y, z, the 
arrangement of minterms is more tricky:

Another way to label the K-map (use whichever you like):

Y
x’y’z ’ x ’y’z x’yz x’yz’

X xy’z ’ xy’z xyz xyz’
Z

   Y 
 m0 m1 m3 m2 
X m4 m5 m7 m6 

  Z  
 

YZ
00 01 11 10

0 x’y’z’ x’y’z x’yz x’yz’
X

1 xy’z’ xy’z xyz xyz’

YZ
00 01 11 10

0 m0 m1 m3 m2X
1 m4 m5 m7 m6
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Making the example K-map

Next up is drawing and filling in the K-map.

 Put 1s in the map for each minterm, and 0s in the other squares.

 You can use either the minterm products or the shorthand to show you 
where the 1s and 0s belong.

In our example, we can write f(x,y,z) in two equivalent ways.

In either case, the resulting K-map is shown below.
Y

0 1 0 0
X 0 1 1 1

Z

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

f(x,y,z) = x’y’z + xy’z + xyz’ + xyz

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z

f(x,y,z) = m1 + m5 + m6 + m7
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Grouping the minterms together

The most difficult step is grouping together all the 1s in the K-map.

 Make rectangles around groups of one, two, four or eight 1s.

 All of the 1s in the map should be included in at least one 
rectangle. 

 Do not include any of the 0s.

 Each group corresponds to one product term. For the simplest 
result:

 Make as few rectangles as possible, to minimize the number of 
products in the final expression.

 Make each rectangle as large as possible, to minimize the 
number of literals in each term.

 It’s all right for rectangles to overlap, if that makes them larger.

Y
0 1 0 0

X 0 1 1 1
Z
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Reading the MSP from the K-map

Finally, you can find the MSP.

 Each rectangle corresponds to one product term.

 The product is determined by finding the common literals in 
that rectangle.

For our example, we find that xy + y’z + xz = y’z + xy. (This is one 
of the additional algebraic laws from last time.)

Y
x’y’z’ x’y’z x’yz x’yz’

X xy’z’ xy’z xyz xyz’
Z

Y
0 1 0 0

X 0 1 1 1
Z
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Practice K-map 1

Simplify the sum of minterms m1 + m3 + m5 + m6.

Y

X
Z

Y
m0 m1 m3 m2

X m4 m5 m7 m6

Z
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Solutions for practice K-map 1

Here is the filled in K-map, with all groups shown.

 The magenta and green groups overlap, which makes each of 
them as large as possible.

 Minterm m6 is in a group all by its lonesome.

The final MSP here is x’z + y’z + xyz’.

Y
0 1 1 0

X 0 1 0 1
Z
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Four-variable K-maps

We can do four-variable expressions too!

 The minterms in the third and fourth columns, and in the 
third and fourth rows, are switched around.

 Again, this ensures that adjacent squares have common 
literals.

Grouping minterms is similar to the three-variable case, but:

 You can have rectangular groups of 1, 2, 4, 8 or 16 
minterms.

 You can wrap around all four sides.

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z
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Example: Simplify m0+m2+m5+m8+m10+m13

The expression is already a sum of minterms, so here’s the K-map:

We can make the following groups, resulting in the MSP x’z’ + xy’z.

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14
X

W
m8 m9 m11 m10

Z

Y
1 0 0 1
0 1 0 0
0 1 0 0

X
W

1 0 0 1
Z

Y
w’x’y’z’ w’x’y’z w’x’yz w’x’yz’
w’xy’z’ w’xy’z w’xyz w’xyz’
wxy’z’ wxy’z wxyz wxyz’

X
W

wx’y’z’ wx’y’z wx’yz wx’yz’
Z
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Recurrence Relation
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Recurrence Relation
A recurrence relation is a recursive formula that counts the number 
of ways to do a procedure involving n objects in terms of the 
number of ways to do it with fewer objects.

E.g., an = c1an-1 + c2an-2 , a1 = 0, a2 = 1

A recurrence relation’s starting values are called initial conditions.
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Reccurence Relation

Proving things about a recurrence relation usually is done by 

mathematical induction.

Typical forms of recurrence relations include:

 an = c1an-1 + c2an-2 + . . . + cran-r

 an = c1an-1 + c2

 an = c1an-1 + f(n)
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Recursive definition of a sequence

Specify one or more initial terms

Specify rule for obtaining subsequent terms from preceding terms

We can use such definitions to solve counting problems that cannot 
easily be solved using techniques
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Recurrence Relations

When rule for finding subsequent terms from previous is used 
for solving counting problems, we call the rule a recurrence 
relation

Stated more formally: A recurrence relation for the sequence 
{an} is an equation that expresses an in terms of one or more of 
the previous terms of the sequence a0, a1, … an-1 for all integers 
n with nn0, where n0 is non-negative
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Solutions
A sequence whose terms satisfy a recurrence relation is called a 

solution of the recurrence relation

Example 1: Let {an} be a sequence that satisfies the recurrence 
relation an = an-1- an-2 for n = 2, 3, 4 …

 Suppose a0=3 and a1=5.  What are a2 and a3?

 a2 = a1 - a0 = 2, a3 = a2 - a1 = -3
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Example 2
Find the first 5 terms of a sequence defined as follows:

 recurrence relation: an = nan-1 + n2an-2

 initial condition: a0 = 1, a1 = 1

Applying the rules:

a2 = 2(1) + (2)21 = 6

a3 = 3(6) + (3)21 = 27

a4 = 4(27) + (4)26 = 204
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Example 2
Determine whether {an} is a solution of the recurrence relation an

= 2an-1-an-2 for n=2, 3, 4 … where an = 3n 

if an = 3n, then for n  2:

2an-1 - an-2 = 2[3(n-1)] - 3(n-2)

= 2(3n - 3) - 3n + 6

= 6n - 6 - 3n + 6 = 3n

So {an}, where an = 3n, is a solution
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Example 3
Determine whether {an} is a solution of the recurrence relation an = 

2an-1-an-2 for n=2, 3, 4 … where an = 2n:

 By this rule, a0 = 20 = 1; a1 = 21 = 2; a2 = 22 = 4

 Applying original recurrence relation:

an = 2a n-1 - a n-2

a2 = 2a1 - a0 substituting actual values:

4 = 2*2 - 1

4 = 3 not true, so {an} where an = 2n is not a solution
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Summary of Recurrence Relations

Initial conditions for a sequence specify terms that precede the first 
term where recurrence relation takes effect
Recurrence relation & initial conditions uniquely determine a 
sequence, providing a recursive definition of the sequence
Any term of a sequence can be found from initial conditions using 
recurrence relation a sufficient number of times (but there are 
better ways for computing certain classes of sequences)


