
MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.1

JAVA Programming
MCA 109

UNIT 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.2

Learning Objectives
• JDBC: Introduction to DBMS & RDBMS, DBC API, JDBC

Application Architecture, Obtaining a Connection, JDBC
Models: Two Tier and Three Tier Model, Result Set,
Prepared Statement, Callable Statement.

• Java 8 Concepts: Default and Functional Interfaces,
Lambda Expression, Java stream API and Pipelines, Try
with Resources, Java 8 Memory optimization.

• RMI (Remote Method Invocation): Introduction, Steps in
creating a Remote Object, Generating Stub & Skeleton,
RMI Architecture, RMI packages.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.3

JDBC

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.4

JDBC

• Java JDBC is a java API to connect and execute
query with the database.

• JDBC API uses jdbc drivers to connect with the
database.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.5

API

• API (Application programming interface) is a document
that contains description of all the features of a product
or software.

• It represents classes and interfaces that software
programs can follow to communicate with each other.

• An API can be created for applications, libraries,
operating systems, etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.6

Need for JDBC

• Before JDBC, ODBC API was the database API to
connect and execute query with the database.

• But, ODBC API uses ODBC driver which is written in C
language (i.e. platform dependent and insecure).

• That is why Java has defined its own API (JDBC API)
that uses JDBC drivers (written in Java language).

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.7

JDBC Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.8

JDBC Two Tier Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.9

JDBC Two Tier Model

• In the two-tier model, a Java application talks directly to
the data source.

• This requires a JDBC driver that can communicate with
the particular data source being accessed.

• A user's commands are delivered to the database or
other data source, and the results of those statements
are sent back to the user.

• The network can be an intranet or it can be the Internet.

• The data source may be located on another machine
to which the user is connected via a network. This is
referred to as a client/server configuration

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.10

JDBC Three Tier Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.11

JDBC Three Tier Model

• In the three-tier model, commands are sent to a "middle
tier" of services, which then sends the commands to the
data source.

• The data source processes the commands and sends
the results back to the middle tier, which then sends
them to the user.

• Middle tier makes it possible to maintain control over
access and the kinds of updates that can be made to
corporate data.

• Another advantage is that it simplifies the deployment
of applications. Finally, in many cases, the three-tier
architecture can provide performance advantages.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.12

JDBC Drivers

• JDBC Driver is a software component that enables
java application to interact with the database.

• There are 4 types of JDBC drivers:

JDBC-ODBC bridge driver

Native-API driver (partially java driver)

Network Protocol driver (fully java driver)

Thin driver (fully java driver)

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.13

JDBC Drivers

1. JDBC-ODBC Bridge

The JDBC-ODBC bridge driver uses ODBC driver to
connect to the database. The JDBC-ODBC bridge driver
converts JDBC method calls into the ODBC function calls.
This is now discouraged because of thin driver.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.14

JDBC Drivers

2. Native API Driver

The Native API driver uses the client-side libraries of the
database. The driver converts JDBC method calls into
native calls of the database API. It is not written entirely in
java.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.15

JDBC Drivers

3. Network Protocol Driver

The Network Protocol driver uses middleware (application
server) that converts JDBC calls directly or indirectly into
the vendor-specific database protocol. It is fully written in
java.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.16

JDBC Drivers

4. Thin Driver

The thin driver converts JDBC calls directly into the
vendor-specific database protocol. That is why it is known
as thin driver. It is fully written in Java language.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.17

Connection to Database

• Register the driver class

• Creating connection

• Creating statement

• Executing queries

• Closing connection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.18

DriverManager Class

• The DriverManager class acts as an interface between
user and drivers.

• It keeps track of the drivers that are available and
handles establishing a connection between a database
and the appropriate driver.

• The DriverManager class maintains a list of Driver
classes that have registered themselves by calling the
method DriverManager.registerDriver().

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.19

Connection Interface

• A Connection is the session between java application
and database.

• The Connection interface is a factory of Statement,
PreparedStatement, and DatabaseMetaData i.e. object
of Connection can be used to get the object of
Statement and DatabaseMetaData.

• The Connection interface provide many methods for
transaction management like commit(), rollback() etc.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.20

Statement Interface

• The Statement interface provides methods to execute
queries with the database.

• The statement interface is a factory of ResultSet i.e. it
provides factory method to get the object of ResultSet.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.21

ResultSet Interface

• The object of ResultSet maintains a cursor pointing to a
row of a table.

• Initially, cursor points to before the first row.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.22

PreparedStatement Interface

• The PreparedStatement interface is a sub-interface of
Statement.

• It is used to execute parameterized query.

• Let's see the example of parameterized query:

String sql="insert into emp values(?,?,?)";

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.23

CallableStatement Interface

• CallableStatement interface is used to call the stored
procedures and functions.

• We can have business logic on the database by the use
of stored procedures and functions that will make the
performance better because these are precompiled.

• Suppose you need the get the age of the employee
based on the date of birth, you may create a function
that receives date as the input and returns age of the
employee as the output.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.24

JDBC Class Diagram

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.25

RMI

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.26

Remote Method Invocation
• Remote Method Invocation (RMI) is an API which allows

an object to invoke a method on an object that exists in
another address space, which could be on the same
machine or on a remote machine.

• Through RMI, object running in a JVM present on a
computer (Client side) can invoke methods on an object
present in another JVM (Server side).

• RMI creates a public remote server object that enables
client and server side communications through simple
method calls on the server object.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.27

Working of RMI

• The communication between client and server is handle
d by using two intermediate objects:

Stub object (on client side)

Skeleton object (on server side).

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.28

Working of RMI

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.29

RMI Goals

• To minimize the complexity of the application.

• To preserve type safety.

• Distributed garbage collection.

• Minimize the difference between working with local and
remote objects.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.30

RMI Architecture

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.31

RMI Architecture
•Transport Layer − This layer connects the client and the
server. It manages the existing connection and also sets
up new connections.
•Stub − A stub is a representation (proxy) of the remote
object at client. It resides in the client system; it acts as a
gateway for the client program.
•Skeleton − This is the object which resides on the server
side. stubcommunicates with this skeleton to pass request
to the remote object.
•RRL(Remote Reference Layer) − It is the layer which
manages the references made by the client to the remote
objec

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.32

Stub Object

• The stub object on the client machine builds an informa
tion block and sends this information to the server.

• The block consists of

An identifier of the remote object to be used

Method name which is to be invoked

Parameters to the remote JVM

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.33

Skeleton Object

• The skeleton object passes the request from the stub o
bject to the remote object.

• It performs following tasks

It calls the desired method on the real object pre
sent on the server.

It forwards the parameters received from the stu
b object to the method.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.34

Marshalling

• Whenever a client invokes a method that accepts
parameters on a remote object, the parameters are
bundled into a message before being sent over the
network.

• These parameters may be of primitive type or objects.

• In case of primitive type, the parameters are put
together and a header is attached to it.

• In case the parameters are objects, then they are
serialized. This process is known as marshalling.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.35

Un-marshalling

• At the server side, the packed parameters are
unbundled and then the required method is invoked.
This process is known as unmarshalling.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.36

RMI Registry

• RMI registry is a namespace on which all server objects
are placed.

• Each time the server creates an object, it registers this
object with the RMIregistry
using bind() or reBind() methods).

• These are registered using a unique name known
as bind name.

• To invoke a remote object, the client needs a reference
of that object. At that time, the client fetches the object
from the registry using its bind name
(using lookup() method).

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.37

RMI Registry

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.38

Implementing RMI

• Defining a remote interface

• Implementing the remote interface

• Creating Stub and Skeleton objects from the implement
ation class using rmic (rmi complier)

• Start the rmi registry

• Create and execute the server application program

• Create and execute the client application program.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.39

Implementing RMI

Step 1: Defining the remote interface
The first thing to do is to create an interface which will
provide the description of the methods that can be invoked
by remote clients. This interface should extend the
Remote interface and the method prototype within the
interface should throw the RemoteException.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.40

Implementing RMI

Step 1: Defining the remote interface
The first thing to do is to create an interface which will
provide the description of the methods that can be invoked
by remote clients. This interface should extend the
Remote interface and the method prototype within the
interface should throw the RemoteException.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.41

Implementing RMI

Step 2: Implementing the remote interface

• The next step is to implement the remote interface. To
implement the remote interface, the class should extend
to UnicastRemoteObject class of java.rmi package.
Also, a default constructor needs to be created to throw
the java.rmi.RemoteException from its parent
constructor in class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.42

Implementing RMI

Step 3: Creating Stub and Skeleton objects from the
implementation class using rmic
The rmic tool is used to invoke the rmi compiler that
creates the Stub and Skeleton objects.

Its prototype is
rmic classname.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.43

Implementing RMI

STEP 4: Start the rmiregistry
Start the registry service by issuing the following
command at the command prompt

start rmiregistry

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.44

Implementing RMI

STEP 5: Create and execute the server application
program
The next step is to create the server application program
and execute it on a separate command prompt.

• The server program uses createRegistry method of
LocateRegistry class to create rmiregistry within the
server JVM with the port number passed as argument.

• The rebind method of Naming class is used to bind the
remote object to the new name.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.45

Implementing RMI

Step 6: Create and execute the client application
program
The last step is to create the client application program
and execute it on a separate command prompt .The
lookup method of Naming class is used to get the
reference of the Stub object.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.46

Java 8 Concepts

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.47

Default and Functional Interfaces
• Functional interfaces were introduced as part of Java 8. Implemented using the

annotation called @FunctionalInterface. It ensures that the interface should
have only one abstract method.

• The usage of the abstract keyword is optional as the method defined inside the
interface is by default abstract. It is important to note that a functional interface
can have multiple default methods (it can be said concrete methods which are
default), but only one abstract method.

• The default method has been introduced in interface so that a new method can
be appended in the class without affecting the implementing class of the
existing interfaces. Prior to Java 8, the implementing class of an interface had
to implement all the abstract methods defined in the interface.

• The functional interface has been introduced in Java 8 to support the lambda
expression. On the other hand, it can be said lambda expression is the
instance of a functional interface.

• Functional Interface is also known as Single Abstract Method Interfaces or
SAM Interfaces. It is a new feature in Java, which helps to achieve functional
programming approach.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.48

Example
@FunctionalInterface
interface sayable{

void say(String msg);
}
public class FunctionalInterfaceExample implements sayable{

public void say(String msg){
System.out.println(msg);

}
public static void main(String[] args) {

FunctionalInterfaceExample fie = new FunctionalInterfaceExa
mple();

fie.say("Hello");
}

}

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.49

Lambda Expression
• A lambda expression is a short block of code which takes in parameters and

returns a value. Lambda expressions are similar to methods, but they do not
need a name and they can be implemented right in the body of a method.

The simplest lambda expression contains a single parameter:
parameter -> expression
To use more than one parameter, wrap them in parentheses.
(parameter,parameter) -> expression
Expressions are limited. They have to immediately return a value, and they cannot
contain variables, assignments or statements such as if or for. In order to do more
complex operations, a code block can be used with curly braces. If the lambda
expression needs to return a value, then the code block should have
a return statement.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.50

Example
• import java.util.ArrayList;

• public class Main {

• public static void main(String[] args) {

• ArrayList<Integer> numbers = new
ArrayList<Integer>();

• numbers.add(5);

• numbers.add(9);

• numbers.add(8);

• numbers.add(1);

• numbers.forEach((n) -> { System.out.println(n); });

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.51

java.stream API & Pipelines
• First of all, Java 8 Streams should not be confused with

Java I/O streams (ex: FileInputStream etc); these have
very little to do with each other.

• Simply put, streams are wrappers around a data source,
allowing us to operate with that data source and making
bulk processing convenient and fast.

• A stream does not store data and, in that sense, is not a
data structure. It also never modifies the underlying data
source.

• This functionality – java.util.stream – supports
functional-style operations on streams of elements, such
as map-reduce transformations on collections.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.52

Example
private static Employee[] arrayOfEmps = {

new Employee(1, "Jeff Bezos", 100000.0),

new Employee(2, "Bill Gates", 200000.0),

new Employee(3, "Mark Zuckerberg", 300000.0)};

Stream.of(arrayOfEmps);

OR

private static List<Employee> empList =
Arrays.asList(arrayOfEmps);

empList.stream();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.53

Example
import java.util.ArrayList;

import java.util.List;

import java.util.stream.Stream;

public class StreamExample { public static void main(String[] args) {

List<Integer> myList = new ArrayList<>();

for(int i=0; i<100; i++) myList.add(i);

//sequential stream

Stream<Integer> sequentialStream = myList.stream();

//parallel stream

Stream<Integer> parallelStream = myList.parallelStream();

//using lambda with Stream API, filter example

Stream<Integer> highNums = parallelStream.filter(p -> p > 90);

//using lambda in forEach

highNums.forEach(p -> System.out.println("High Nums parallel="+p));

Stream<Integer> highNumsSeq = sequentialStream.filter(p -> p > 90);

highNumsSeq.forEach(p -> System.out.println("High Nums sequential="+p));}}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.54

Try with Resources
A resource is an object that must be closed once your program is
done using it. For example a File resource or JDBC resource for
database connection or a Socket connection resource. Before Java
7, there was no auto resource management and we should explicitly
close the resource once our work is done with it. Usually, it was
done in the finally block of a try-catch statement. This approach
used to cause memory leaks and performance hit when we forgot to
close the resource.

Java 7 try with resources implementation:

try(// open resources here){

// use resources

} catch (FileNotFoundException e) {

// exception handling}

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.55

• It has always been hard to work with Date, Time and Time Zones
in java. There was no standard approach or API in java for date
and time in Java. One of the nice addition in Java 8 is the
java.time package that will streamline the process of working with
time in java.

• Just by looking at Java Time API packages, I can sense that it will
be very easy to use. It has some sub-packages java.time.format
that provides classes to print and parse dates and times and
java.time.zone provides support for time-zones and their rules.

• The new Time API prefers enums over integer constants for
months and days of the week. One of the useful class is
DateTimeFormatter for converting datetime objects to strings.

Java Time API

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.56

Collections API Improvements
• We have already seen forEach() method and Stream API for

collections. Some new methods added in Collection API are:

• Iterator default method forEachRemaining(Consumer action) to
perform the given action for each remaining element until all
elements have been processed or the action throws an exception.

• Collection default method removeIf(Predicate filter) to remove all
of the elements of this collection that satisfy the given predicate.

• Collection spliterator() method returning Spliterator instance that
can be used to traverse elements sequentially or parallel.

• Map replaceAll(), compute(), merge() methods.

• Performance Improvement for HashMap class with Key Collisions

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.57

Concurrency API Improvements
• Some important concurrent API enhancements are:

• ConcurrentHashMap compute(), forEach(),
forEachEntry(), forEachKey(), forEachValue(), merge(),
reduce() and search() methods.

• CompletableFuture that may be explicitly completed
(setting its value and status).

• Executors newWorkStealingPool() method to create a
work-stealing thread pool using all available processors
as its target parallelism level.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.58

Java IO Improvements
• Some IO improvements known to me are:

• Files.list(Path dir) that returns a lazily populated Stream,
the elements of which are the entries in the directory.

• Files.lines(Path path) that reads all lines from a file as a
Stream.

• Files.find() that returns a Stream that is lazily populated
with Path by searching for files in a file tree rooted at a
given starting file.

• BufferedReader.lines() that return a Stream, the
elements of which are lines read from this
BufferedReader.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.59

Miscellaneous Core API Improvements
• Some misc API improvements that might come handy are:

1. ThreadLocal static method withInitial(Supplier supplier) to create instance easily.

2. Comparator interface has been extended with a lot of default and static methods
for natural ordering, reverse order etc.

3. min(), max() and sum() methods in Integer, Long and Double wrapper classes.

4. logicalAnd(), logicalOr() and logicalXor() methods in Boolean class.

5. ZipFile.stream() method to get an ordered Stream over the ZIP file entries. Entries
appear in the Stream in the order they appear in the central directory of the ZIP file.

6. Several utility methods in Math class.

7. jjs command is added to invoke Nashorn Engine.

8. jdeps command is added to analyze class files

9. JDBC-ODBC Bridge has been removed.

10. PermGen memory space has been removed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.60

Java 8 Memory optimization

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.61

Java 8 Memory Optimization
• The Heap memory is physically divided into two parts –
• Young Generation and Old Generation.
• Memory Management in Java – Young Generation
• The young generation is the place where all the new objects are created. When
the young generation is filled, garbage collection is performed. This garbage
collection is called Minor GC.
• Young Generation is divided into three parts – Eden Memory and two
Survivor Memory spaces.
 Most of the newly created objects are located in the Eden memory space.
 When Eden space is filled with objects, Minor GC is performed and all the

survivor objects are moved to one of the survivor spaces.
 Minor GC also checks the survivor objects and move them to the other

survivor space. So at a time, one of the survivor space is always empty.
 Objects that are survived after many cycles of GC, are moved to the Old

generation memory space. Usually, it’s done by setting a threshold for the age
of the young generation objects before they become eligible to promote to Old
generation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.62

Java 8 Memory Optimization
• Memory Management in Java – Old Generation

• Old Generation memory contains the objects that are long-lived and survived
after many rounds of Minor GC. Usually, garbage collection is performed in Old
Generation memory when it’s full. Old Generation Garbage Collection is called
Major GC and usually takes a longer time.

• Java Memory Model – Permanent Generation

• Permanent Generation or “Perm Gen” contains the application metadata
required by the JVM to describe the classes and methods used in the
application. Note that Perm Gen is not part of Java Heap memory.

• Perm Gen is populated by JVM at runtime based on the classes used by the
application. Perm Gen also contains Java SE library classes and methods.
Perm Gen objects are garbage collected in a full garbage collection.

• Java Memory Model – Method Area

• Method Area is part of space in the Perm Gen and used to store class structure
(runtime constants and static variables) and code for methods and
constructors.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.63

Java 8 Memory Optimization
• Java Memory Model – Memory Pool

• Memory Pools are created by JVM memory managers to create a pool of
immutable objects if the implementation supports it. String Pool is a good
example of this kind of memory pool. Memory Pool can belong to Heap or
Perm Gen, depending on the JVM memory manager implementation.

• Java Memory Model – Runtime Constant Pool

• Runtime constant pool is per-class runtime representation of constant pool in a
class. It contains class runtime constants and static methods. Runtime
constant pool is part of the method area.

• Java Memory Model – Java Stack Memory

• Java Stack memory is used for execution of a thread. They contain method
specific values that are short-lived and references to other objects in the heap
that is getting referred from the method.

MCA-109, Object Oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr Ritika Wason U4 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.64

Java 8 Memory Optimization
• Memory Management in Java – Java Heap Memory

Switches

• Java provides a lot of memory switches that we can use
to set the memory sizes and their ratios. Some of the
commonly used memory switches are:

• -XX:PermGen For setting the initial size of the
Permanent Generation memory

• -XX:MaxPermGen For setting the maximum size of
Perm Gen

• Memory Management in Java – Java Garbage
Collection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof, BVICAM U4.65

Java 8 Memory Optimization
• One of the basic ways of garbage collection involves

three steps:

• 1. Marking: This is the first step where garbage
collector identifies which objects are in use and which
ones are not in use.

• 2. Normal Deletion: Garbage Collector removes the
unused objects and re-claim the free space to be
allocated to other objects.

• 3. Deletion with Compacting: For better performance,
after deleting unused objects, all the survived objects
can be moved to be together. This will increase the
performance of allocation of memory to newer objects.

