
MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 1

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason Asso. Prof., BVICAM U1.1

JAVA Programming
MCA 109

UNIT I

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.2

Syllabus- Unit 1

• Importance and features of Java, Language Construct
of java including Keywords, constants

• Variables and looping and decision making construct,
Classes and their implementation

• Introduction to JVM and its architecture including set of
instructions. Overview of JVM Programming

• Internal and detailed explanation of a valid .class file
format.

• Instrumentation of a .class file, Byte code engineering
libraries, Overview of class loaders and Sandbox model
of security.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.3

• Introducing classes, objects and methods: defining a
class, adding variables and methods,creating objects,
constructors, class inheritance.

• Arrays and String: Creating an array, one and two
dimensional arrays, string array and methods,

• Classes: String and String Buffer classes,

• Wrapper classes: Basics types, using super, Multilevel
hierarchy abstract and final classes, Object class,
Packages and interfaces, Access protection, Extending
Interfaces, packages.

Syllabus- Unit 1

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 2

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason Asso. Prof., BVICAM U1.4

Importance and Features of Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.5

• The idea of object-oriented programming gained momentum in the
1970s and in the early 1980s.

• Bjarne Stroustrup integrated object-oriented programming into
the C language. The resulting language was called C++ and it
became the first object-oriented language to be widely used
commercially.

• In the early 1990s a group at Sun led by James Gosling and team
developed a simpler version of C++ called Java that was meant to be
a programming language for video-on-demand applications.

• This project was going nowhere until the group re-oriented its
focus and marketed Java as a language for programming Internet
applications.

• The language has gained widespread popularity as the Internet
has boomed, although its market penetration has been limited by its
inefficiency.

Evolution of Object Orientation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.6

Evolution of Object Orientation
1. Monolithic Programming Approach: In this approach, the

program consists of sequence of statements that modify data.

• All the statements of the program are Global throughout the
whole program. The program control is achieved through the use
of jumps i.e. goto statements.

• In this approach, code is duplicated each time because there is
no support for the function. Data is not fully protected as it can be
accessed from any portion of the program.

• So this approach is useful for designing small and simple
programs. The programming languages like ASSEMBLY and
BASIC follow this approach.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 3

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.7

Evolution of Object Orientation

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.8

Evolution of Object Orientation
2. Procedural Programming Approach: This approach is top down
approach. In this approach, a program is divided into functions that
perform a specific task.

• This approach avoids repetition of code which is the main
drawback of Monolithic Approach.

• The basic drawback of Procedural Programming Approach is that
data is not secured because data is global and can be accessed
by any function.

• This approach is mainly used for medium sized applications. The
programming languages: FORTRAN and COBOL follow this
approach.

•3. Structured Programming Approach: The basic principal
of structured programming approach is to divide a program in
functions and modules.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.9

Evolution of Object Orientation

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 4

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.10

Evolution of Object Orientation
• The use of modules and functions makes the program more

comprehensible (understandable). It helps to write cleaner code
and helps to maintain control over each function. This approach
gives importance to functions rather than data.

• It focuses on the development of large software applications. The
programming languages: PASCAL and C follow this approach.

4. Object Oriented Programming Approach: The basic principal of
the OOP approach is to combine both data and functions so that
both can operate into a single unit. Such a unit is called an Object.

• This approach secures data also. Now a days this approach is
used mostly in applications. The programming languages: C++
and JAVA follow this approach. Using this approach we can write
any lengthy code.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.11

Object Orientation Paradigm
• An approach to the solution of problems in which all computations

are performed in context of objects.

• The objects are instances of programming constructs, normally
called as classes which are data abstractions with procedural
abstractions that operate on objects.

• A software system is a set of mechanism for performing certain
action on certain data

Algorithm + Data structure = Program

• Data Abstraction + Procedural Abstraction

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.12

Trade-offs of a Programming

• Ease-of-use versus power

• Safety versus efficiency

• Rigidity versus extensibility

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 5

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.13

Java – The Evolution

• Assembly language can be used to produce highly
efficient programs, but it is not easy to learn or use
effectively.

• C was a direct result of the need for a structured,
efficient, high-level language that could replace
assembly code when creating systems programs.

• FORTRAN could be used to write fairly efficient
programs for scientific applications, it was not very
good for system code.

• BASIC lacks structure and its usefulness is questionable
for large programs

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.14

Java – The Evolution

• During the late 1970s and early 1980s, C became the
dominant computer programming language, and it is still
widely used today.

• By the end of the 1980s and the early 1990s, object-
oriented programming using C++ took hold.

• Java was conceived by James Gosling, Patrick
Naughton, Chris Warth, Ed Frank, and Mike Sheridan at
Sun Microsystems, Inc. in 1991.

• It took 18 months to develop the first working version.
This language was initially called “Oak,” but was
renamed “Java” in 1995.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.15

Java – Simplified !

• Java is a programming language that produces
software for various platforms.

• Sun Microsystems describe it as
 "A simple, object- oriented, distributed, interpreted, robust,

secure, architect neutral, portable, high- performance, multi-
threaded and dynamic language."

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 6

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.16

Prime Motivations for Java

1. Need for a platform-independence (architecture-
neutral)

 A language that could be used to create software to be
embedded in various consumer electronic devices, such as
microwave ovens and remote controls.

• C and C++ are designed to be compiled for a specific
target.
 Compilers are expensive and time-consuming to create

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.17

Prime Motivations for Java

2. Emergence of World Wide Web
 Had the Web not taken shape Java might have remained a

useful but obscure language for programming consumer
electronics.

 Java was propelled to the forefront of computer language
design, because the Web, too, demanded portable
programs.

• While the desire for an architecture-neutral
programming language provided the initial spark, the
Internet ultimately led to Java’s large-scale success.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.18

Java – The Higher Ups!

• Simple

• Object oriented

• Network-Savvy

• Robust

• Secure

• Architecture Neutral

• Portable

• Interpreted

• High Performance

• Multithreaded

• Dynamic

High Level Language

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 7

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.19

Java SDK
• The Java SDK comes in three versions:

 J2ME - Micro Edition (for handheld and portable devices)
 J2SE - Standard Edition (PC development)
 J2EE - Enterprise Edition (Distributed and Enterprise

Computing)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.20

JAVA Platform

Java Platform has two components:

• The Java Virtual Machine

• The Java Application Programming Interface (API)

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.21

JDK, JRE and JVM
1. The Java Development Kit (JDK)- is a software

development environment used for developing Java
applications and applets. It includes the Java Runtime
Environment (JRE), an interpreter/loader (Java), a
compiler (javac), an archiver (jar), a documentation
generator (Javadoc) and other tools needed in Java
development.

2. JRE stands for “Java Runtime Environment” and may
also be written as “Java RTE.” The Java Runtime
Environment provides the minimum requirements for
executing a Java application; it consists of the Java
Virtual Machine (JVM), core classes, and supporting
files.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 8

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.22

JDK, JRE and JVM
3. JVM – Java Virtual machine(JVM) is a very important
part of both JDK and JRE because it is contained or inbuilt
in both. Whatever Java program you run using JRE or JDK
goes into JVM and JVM is responsible for executing the
java program line by line hence it is also known as
interpreter.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.23

JDK, JRE and JVM

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.24

Java Execution Process

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 9

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.26

Java’s Magic – The Bytecode

• The key that allows Java to solve both the security and
the portability problems is that the output of a Java
compiler is not executable code. Rather, it is bytecode.

• “Bytecode is a highly optimized set of instructions
designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM)”.

• JVM is the interpreter for bytecode.

• Java code can run on any platform that has JVM
implemented.

• JVM is default implemented in most of the OS by virtue
of contract with Sun Microsystems.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.27

• JVM also helps to make Java secure as it contains the
program and prevent it from generating side effects
outside of the system.

• Java was designed as an interpreted language

• But it can also on-the-fly compile bytecode into native
code in order to boost performance by JIT.

• JIT compiler compiles code as it is needed, during
execution.

Java’s Magic – The Bytecode

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 10

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.28

Evolution of JAVA Language
Versi
on

Year New Language Features No. of Classes &
Interfaces

1.0 1996 The language itself 211

1.1 1997 Inner Classes 477

1.2 1998 Addition of Swing GUI 1524

1.3 2000 None 1840

1.4 2004 Assertions 2723

5.0 2004 Generic classes, “for each” loop, varargs,
autoboxing, metadata, enumerations, static
import

3279

6 2006 None 3777

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.29

“Welcome" for Microsoft Windows

• Download JDK

• Follow installation directions

• Set Execution Path

• Install the library source & documentation

• Install the Core Java Program examples

• Java Directory Tree
 Jdk

 Bin

Demo

Docs

 Include

 Jre

 Lib

 Src

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.30

“Welcome" for Microsoft Windows..

• Creating Your First Application
 Create a Source File

 Compile the Source File into a .class File

 Run the Program

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 11

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.31

Welcome. java
public class Welcome

{

public static void main(String[] args)

{

String[] greeting = new String[3];

greeting[0] = "Welcome to Core Java";

greeting[1] = "by Cay Horstmann";

greeting[2] = "and Gary Cornell";

for (String g : greeting)

System.out.println(g);

}

}

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.32

Language Basics

• Lexicals

• Comments

• Primitive Data Types

• Variables

• Constants

• Operators

• Expressions, Statements, and Blocks

• Control Flow Statements

• Array

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.33

Lexicals
1. Whitespace

2. Identifiers
 Identifiers are used for class names, method names, and

variable names. An identifier maybe any descriptive sequence
of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters

3. Literals
 A constant value in Java is created by using a literal

representation of it.

4. Comments
 A single-line comment: // ... to the end of the line

 A multiple-line comment: /* ... */

 A documentation (Javadoc) comment: /** ... */

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 12

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.34

String Literals

• String literals in Java are specified like they are in most
other languages—by enclosing a sequence of
characters between a pair of double quotes.

• Examples of string literals are
 “Hello World”

 “two\nlines”

 “\”This is in quotes\”“

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.35

Escape Sequences

• The escape sequences and octal/hexadecimal notations
that were defined for character literals work the same
way inside of string literals

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.36

Lexicals
5. Seperators

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 13

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.37

Lexicals
6. Keywords

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.38

Primitive Data Types

• Strongly typed language

• Eight primitive types
 Four Integer types

int 4 bytes

short 2 bytes

long 8 bytes

byte 1 byte

 Two Floating-point types
float 4 bytes (6-7 significant decimal digits)

double 8 bytes (15 significant decimal digits)

 char type

 boolean type

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.39

Primitive Data Types

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 14

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.40

Variables
• The variable is the basic unit of storage in a Java

program. A variable is defined by the combination of an
identifier, a type, and an optional initializer.

• In addition, all variables have a scope, which defines
their visibility, and a lifetime.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.41

Variables
• Types of variables in JAVA

 Instance Variables (Non-Static Fields)

 Class Variables (Static Fields)

 Local Variables

 Parameters

• Naming
 Case-sensitive

 Subsequent characters may be letters, digits, dollar signs, or
underscore characters

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.42

Reference Variables

• Store the reference value of an object

• Reference type can be a class/an array or an interface
name
Pizza yummyPizza = new Pizza("Hot&Spicy");

// Declaration with initializer

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 15

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.43

Default Values

Data Type Default Value

boolean false

char '\u0000'

Integer (byte, short, int, long) 0L for long, 0 for others

Floating-point (float, double) 0.0F or 0.0D

Reference types null

Local variable must be initialized explicitly

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.44

Constant

• Include final Keyword in declaration

• Final variables must be initialized upon declaration

final int MAX_BUFFER_SIZE = 256;

final float PI=3.14159;

• Class constant can be setup using keyword

static final

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.45

Java’s Type Casting

• Java’s automatic type conversion will take place if the
following two conditions are met:
 The two types are compatible.

 The destination type is larger than the source type.

• This type of conversion is called widening conversion.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 16

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.46

Java’s Type Casting
• Narrowing conversion explicitly making the value

narrower so that it will fit into the target type.

• To create a conversion between two incompatible types,
you must use a cast. A cast is simply an explicit type
conversion. Format is as follows:-

(target-type) value

• For example, the following fragment casts an int to a
byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an
integer division by the) byte’s range.

int a;

byte b;

b = (byte) a;

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.47

Switching Constructs

• If block

• If-else ladder

• If-elseif ladder

• Nested if’s

• Switch case

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.48

Looping Constructs

• For Loop

• For-each Loop(foreach)

for(type itr-var:collection)statement block;

• While Loop

• While(condition){}

• Do-while Loop

do{

}while(condition);

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 17

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.49

Control Constructs

• break

• continue

• return

• goto

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.50

Access Constructs

• Final

• static

• Access Specifiers
 public

 private

 protected

 default/Package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.51

Access Constructs

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 18

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.52

Reference vs. Instance Variables

• A reference variable is declared to be of a specific type
and that type can never be changed.

• Reference variables can be declared as
 static variables- static member variables and there's only

one copy of that variable that is shared with all instances of
that class

 instance variables - belong to the instance of a class, thus an
object

 local variables

 method parameters

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.53

Array

• An array is a container object that holds a fixed
number of values of a single type

• An array is a group of like-typed variables that are
referred to by a common name.

• Array declaration

int[] anArray;

Creating, Initializing, and Accessing an Array

anArray = new int[10];

int[] anArray = { 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000 };

• Once created size can’t be changed

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.54

1D Array

• A one-dimensional array is, essentially, a list of like-
typed variables.

• The general form of a one-dimensional array declaration
is

type var-name[]

• type declares the base type of the array. The base type
determines the data type of each element that
comprises the array.

• Alternative Declarative Syntax
int al[] = new int[3];

int[] a2 = new int[3];

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 19

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.55

Multi-dimensional Arrays

• In Java, multidimensional arrays are actually arrays of
arrays.

• An instance of multi-dimensional array is:-
int twoD[][] = new int[4][5];

• This allocates a 4 by 5 array and assigns it to twoD.

• Internally this matrix is implemented as an array of
arrays of int.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.56

“for each” Loop

• SE 5.0 introduced enhanced for loop construct to loop
through each element
for (variable : collection) statement

for (int i : anArray) //for each element in anArray

System.out.println(element);

• Traverses the element of the array not index

• Class Arrays
 java.util.Arrays

• contains various methods for manipulating arrays (such
as sorting and searching).

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.57

JVM Internals

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 20

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.58

• JVM(Java Virtual Machine) acts as a run-time engine to
run Java applications.

• JVM is the one that actually calls the main method
present in a java code.

• JVM is a part of JRE(Java Runtime Environment).

• When we compile a .java file, .class files(contains byte-
code) with the same class names present in .java file
are generated by the Java compiler. This .class file goes
into various steps when we run it. These steps together
describe the whole JVM.

JVM Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.59

JVM Architecture

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.60

• It is mainly responsible for three activities.

Loading

Linking

Initialization

Class Loader Subsystem

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 21

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.61

• The Class loader reads the .class file, generate the
corresponding binary data and save it in method area.
For each .class file, JVM stores following information in
method area.

Fully qualified name of the loaded class and its immediate parent
class.

Whether .class file is related to Class or Interface or Enum

Modifier, Variables and Method information etc.

• After loading .class file, JVM creates an object of type
Class to represent this file in the heap memory.

Loading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.62

• This Class object can be used by the programmer for
getting class level information like name of class, parent
name, methods and variable information etc.

• To get this object reference we can use getClass()
method of Object class

Loading

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.63

• Verification : It ensures the correctness of .class file i.e.
it check whether this file is properly formatted and
generated by valid compiler or not. If verification fails,
we get run-time exception java.lang.VerifyError.

• Preparation : JVM allocates memory for class variables
and initializing the memory to default values.

• Resolution : It is the process of replacing symbolic
references from the type with direct references. It is
done by searching into method area to locate the
referenced entity.

Linking

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 22

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.64

• In this phase, all static variables are assigned with their
values defined in the code and static block(if any).

• This is executed from top to bottom in a class and from
parent to child in class hierarchy.

Initialization

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.65

• The Java ClassLoader is a part of the JRE that
dynamically loads Java classes into the Java Virtual
Machine.

• The Java run time system does not need to know about
files and file systems because of classloaders.

• Java classes aren’t loaded into memory all at once, but
when required by an application.

• At this point, the Java ClassLoader is called by the
JRE and these ClassLoaders load classes into memory
dynamically.

Class Loaders

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.66

• Depending on the type of class and the path of class,
the ClassLoader that loads that particular class is
decided.

• To know the ClassLoader that loads a class the
getClassLoader() method is used.

• All classes are loaded based on their names and if any
of these classes are not found then it returns a
NoClassDefFoundError or ClassNotFoundException.

Class Loaders

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 23

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.67

• BootStrap ClassLoader: A Bootstrap Classloader is a Machine
code which kickstarts the operation when the JVM calls it. It is not
a java class. Its job is to load the first pure Java ClassLoader.
Bootstrap ClassLoader loads classes from the location rt.jar.
Bootstrap ClassLoader doesn’t have any parent ClassLoaders. It
is also called as the Primodial ClassLoader.

• Extension ClassLoader: The Extension ClassLoader is a child
of Bootstrap ClassLoader and loads the extensions of core java
classes from the respective JDK Extension library. It loads files
from jre/lib/ext directory or any other directory pointed by the
system property java.ext.dirs.

Class Loaders Types

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.68

• System ClassLoader: An Application ClassLoader is
also known as a System ClassLoader. It loads the
Application type classes found in the environment
variable CLASSPATH, -classpath or -cp command
line option. The Application ClassLoader is a child
class of Extension ClassLoader.

Class Loaders Types

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.69

public class Test

{

public static void main(String[] args)

{

// String class is loaded by bootstrap loader, and

// bootstrap loader is not Java object, hence null

System.out.println(String.class.getClassLoader());

// Test class is loaded by Application loader

System.out.println(Test.class.getClassLoader());

}

}

Retrieving Class Loaders

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 24

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.70

Class Loaders Delegation Model

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.71

• Method area :In method area, all class level information
like class name, immediate parent class name, methods
and variables information etc. are stored, including static
variables. There is only one method area per JVM, and
it is a shared resource.

• Heap area :Information of all objects is stored in heap
area. There is also one Heap Area per JVM. It is also a
shared resource.

• Stack area :For every thread, JVM create one run-time
stack which is stored here. Every block of this stack is
called activation record/stack frame which store
methods calls. All local variables of that method are

JVM Memory

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.72

• stored in their corresponding frame. After a thread
terminate, it’s run-time stack will be destroyed by JVM. It
is not a shared resource.

• PC Registers :Store address of current execution
instruction of a thread. Obviously each thread has
separate PC Registers.

• Native method stacks :For every thread, separate
native stack is created. It stores native method
information.

JVM Memory

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 25

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.73

JVM Memory

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.74

• Execution engine execute the .class (bytecode). It reads
the byte-code line by line, use data and information
present in various memory area and execute
instructions. It can be classified in three parts :-

• Interpreter : It interprets the bytecode line by line and
then executes. The disadvantage here is that when one
method is called multiple times, every time interpretation
is required.

• Just-In-Time Compiler(JIT) : It is used to increase
efficiency of interpreter.It compiles the entire bytecode
and changes it to native code so whenever interpreter
see repeated method

Execution Engine

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.75

calls,JIT provide direct native code for that part so re-
interpretation is not required,thus efficiency is improved.

• Garbage Collector : It destroy un-referenced objects.For
more on Garbage Collector,refer Garbage Collector.

JVM Memory

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 26

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.76

• Java Native Interface (JNI) :
It is an interface which interacts with the Native Method
Libraries and provides the native libraries(C, C++)
required for the execution. It enables JVM to call C/C++
libraries and to be called by C/C++ libraries which may
be specific to hardware.

• Native Method Libraries :
It is a collection of the Native Libraries(C, C++) which
are required by the Execution Engine.

JVM Memory

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.77

• The Just-In-Time (JIT) compiler is a an essential part of
the JRE i.e. Java Runtime Environment, that is
responsible for performance optimization of java based
applications at run time.

• Compiler is one of the key aspects in deciding
performance of an application for both parties i.e. the
end user and the application developer.

JIT Compiler

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.78

JIT Compiler

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 27

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.79

• While using a JIT compiler, the hardware is able to
execute the native code, as compared to having the
JVM interpret the same sequence of bytecode
repeatedly and incurring an overhead for the translation
process.

• This subsequently leads to performance gains in the
execution speed, unless the compiled methods are
executed less frequently.

• Some of these optimizations performed by JIT compilers
are data-analysis, reduction of memory accesses by
register allocation, translation from stack operations to
register operations, elimination of common expressions

JIT Compiler

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.80

• The JIT compiler aids in improving the performance of
Java programs by compiling bytecode into native
machine code at run time.

• The JIT compiler is enabled throughout, while it gets
activated, when a method is invoked.

• For a compiled method, the JVM directly calls the
compiled code, instead of interpreting it.

• When the java virtual machine first starts up, thousands
of methods are invoked. Compiling all these methods
can significantly affect startup time, even if the end
result is a very good performance optimization.

JIT Compiler

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.81

• A Java class file is a file containing Java bytecode and
having .class extension that can be executed by JVM.

javap –c Test

• A Java class file is created by a Java compiler from
.java files as a result of successful compilation.

• As we know that a single Java programming language
source file (or we can say .java file) may contain one
class or more than one class.

• So if a .java file has more than one class then each
class will compile into a separate class files.

.class File Format

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 28

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.82

ClassFile { u4
magic_number;

U2 minor_version;

U2 major_version;

U2 constant_pool_count;

Cp-info constant_pool[];

U2 access_flags;

U2 this_class;

U2 super_class;

U2 interfaces_count;
interfaces[];

.class File Format

U2 fields_count;

Field_info fields[]; u2
methods_count;
methods[]; u2
attributes_count;
attribute_info
attributes[]; }

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.83

1. magic_number (//0xCAFEBABE): The first 4 bytes of
class file are termed as magic_number. This is a
predefined value which the JVM use to identify whether
the .class file is generated by valid compiler or not.

2. minor_version & major_version: These both
together represents .class file version. JVM will use
these versions to identify which version of the compiler
generates the current .class file. We denotes the
version of class file as M.m where M stands for
major_version and m stands for minor_version

.class File Format

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.84

1. magic_number: The first 4 bytes of class file are
termed as magic_number. This is a predefined value
which the JVM use to identify whether the .class file is
generated by valid compiler or not.

2. minor_version & major_version: These both
together represents .class file version. JVM will use
these versions to identify which version of the compiler
generates the current .class file. We denotes the
version of class file as M.m where M stands for
major_version and m stands for minor_version

.class File Format

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 29

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.85

3. constant_pool_count: It represents the number of the
constants present in the constant pool (When a Java
file is compiled, all references to variables and
methods are stored in the class’s constant pool as a
symbolic reference).

4. constant_pool[]: It represents the information about
constants present in constant pool file.

5. access_flags: It provide the information about the
modifiers which are declared to the class file.

6. this_class: It represents fully qualified name of the
class file.

.class File Format

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.86

7. super_class: It represents fully qualified name of the
immediate super class of current class. Consider
above Sample.java file. When we will compile it, then
we can say this_class will be

8. Sample class and super_class will be Object class.

9. interface_count: It returns the number of interfaces
implemented by current class file.

10.interface[]: It returns interfaces information
implemented by current class file.

11.fields_count: It represents the number of fields (static
variable) present in current class file.

.class File Format

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.87

12. fields[]: It represent fields (static variable) information
present in current class file.

13.method_count: It represents number of methods
present in current class file.

14.method[]: It returns information about all methods
present in current class file.

15.attributes_count: It returns the number of attributes
(instance variables) present in current class file.

16. attributes[]: It provides information about all attributes
present in current class file.

.class File Format

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 30

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.88

• Sandbox is a security mechanism for separating
running programs, usually in order to minimize system
failures or software vulnerabilities from spreading.

• The original security model provided by the Java
platform is known as the sandbox model, which
existed in order to provide a very restricted
environment in which to run untrusted code obtained
from the open network.

• The essence of the sandbox model is that local code
is trusted to have full access to vital system resources
(such as the file system) while downloaded remote
code (an applet) is not trusted and can access only the.

Sandbox Model of Security

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.89

• limited resources provided inside the sandbox

Sandbox Model of Security

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.90

• Overall security is provided through a number of
mechanisms.The language is designed to be type-safe
and easy to use i.e the hope is that the burden on the
programmer is such that the likelihood of making
mistakes is less compare to using other programming
languages such as C or C++.

• Language features such as automatic memory
management, garbage collection, and range checking
on strings and arrays are examples of how the
language helps the programmer to write safe code.

Sandbox Model of Security

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 31

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.91

• Compilers and a bytecode verifier ensure that only
legitimate Java bytecodes are executed. The bytecode
verifier, together with the Java Virtual Machine,
guarantees language safety at run time.

• A Classloader defines a local name space, which can
be used to ensure that an untrusted applet cannot
interfere with the running of other programs.

• Finally, access to crucial system resources is mediated
by the Java Virtual Machine and is checked in advance
by a SecurityManager class that restricts the actions of
a piece of untrusted code to the bare
minimum.(SandBoxing)

Sandbox Model of Security

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.92

Ragged arrays

• Arrays in which different rows have different lengths

• First allocate the array holding the rows

int [][] ragg;//declaration

ragg = new int[max][];//memory allocation for rows

• Next allocate the memory to each rows
for (int n =o; n < max; n++)

ragg[n]= new int[n+1];

int td[][]=new int[4][];

td[0]=new int[3];

td[1]=new int[4];

td[2]=new int[5];

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.93

String Arrays
• Array of strings literals forms a compulated data type when

multiple strings need to be grouped together.

 String[] myFirstStringArray = new String[]{"String 1", "String 2", "String 3"};

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 32

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.94

Exercise

Q1.Give example usage and expected output for the
following methods of Arrays class:
 toString

 copyOf

 sort

 BinarySearch

 Fill

 equals

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.95

Q2. Demonstrate the usage of two dimensional arrays
using any example.

Q.3 Use ragged array to provide the output given below
1

123

12345

1234567

123456789

Exercise

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.96

String Class

• Every string you create is actually an object of type
String. Sequence of Unicode characters

String myString = "this is a test";

• Strings are Immutable and shareable. Their values
cannot be changed after they are created.

• This is because strings are stored in String Literal
Pool.

• The == operator cannot be used to test String objects
for equality

• String Concatenation:-
String myString = "I" + " like " + "Java.";

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 33

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.97

String Literal Pool

• String allocation, like all object allocation, proves costly
in both time and memory.

• To cut down the number of String objects created in the
JVM, the String class keeps a pool of strings.

• Each time your code create a string literal, the JVM
checks the string literal pool first. If the string already
exists in the pool, a reference to the pooled instance
returns.

• If the string does not exist in the pool, a new String
object instantiates, then is placed in the pool.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.98

String Class- Methods

• boolean equals(str2);

• int length();

• char charAt(index);

• void getChars(int SourceStart, int sourceEnd, char
target[], int targetStart);

• char[] toCharArray();

• boolean equals(Object s);

• boolean equalsIgnoreCase(String s);

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.99

String Command Line Args

• Used for passing information into a program when you
run it.

• Accomplished by passing command-line arguments to
main().

public static void main(String args[])

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 34

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.100

Building Strings- String Builder

• Mutable Sequence of Characters.

• Internally, these objects are treated like variable-
length arrays that contain a sequence of characters

• The principal operations StringBuilder are the append
and insert methods, which are overloaded so as to
accept data of any type.

• Each effectively converts a given datum to a string and
then appends or the characters of that string to the
string builder.

• Instances of StringBuilder are not safe for use by
multiple threads.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.101

String Buffer

• A thread-safe, mutable sequence of characters.

• The methods are synchronized where necessary so
that all the operations on any particular instance behave
as if they occur in some serial order.

• Methods:-
 Append()

 Insert()

 Replace()

 Delete()

 Reverse()

 Capacity() //default 16

 EnsureCapacity()

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.102

StringTokenizer

• Allows an application to break a string into tokens.

StringTokenizer st = new StringTokenizer("this is a
test");

while (st.hasMoreTokens()) {
System.out.println(st.nextToken());

}

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 35

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.103

User Interactions

• Enabling user to interact through console

Scanner in = new Scanner(System.in)

int i = in.nextInt();

String s = in.nextLine();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.104

User Interactions

• Reading password from console- Cannot store in String
Literal Pool

• No method for reading individual words or numbers

Console cons = System.console();

String username = cons.readLine("User name:");

char[] passwd = cons.readPassword("Password: ");

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.105

Object & Classes

• Class is at core of Java

• Any concept implemented in Java prg is encapsulated
within class

• Class define new data type which is used to create
object of that type.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 36

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.106

Classes – The Blueprint !!
• A class is a blueprint of an object.

• A class is a group of objects that share common properties &
behavior/ relationships.

• In fact, objects are the variables of the type class.

• Classes are user defined data types and behaves like the built-in
types of a programming language.

• Class are a concept, and the object is the embodiment of that
concept.

• Each class should be designed and programmed to accomplish
one, and only one, thing, in accordance to single responsibility
principle of SOLID design principles.

• In the OOPs concept the variables declared inside a class are
known as "Data Members" and the functions are known as
"Member Functions"

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.107

Class Members
• A class has different members, and developers in Microsoft

suggest to program them in the following order:

• Namespace: The namespace is a keyword that defines a
distinctive name or last name for the class. A namespace
categorizes and organizes the library (assembly) where the class
belongs and avoids collisions with classes that share the same
name.

• Class declaration: Line of code where the class name and type
are defined.

• Fields: Set of variables declared in a class block.

• Constants: Set of constants declared in a class block.

• Constructors: A method or group of methods that contains code
to initialize the class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.108

Class Members
• Properties: The set of descriptive data of an object.

• Events: Program responses that get fired after a user or
application action.

• Methods: Set of functions of the class.

• Destructor: A method that is called when the class is destroyed.
In managed code, the Garbage Collector is in charge of destroying
objects; however, in some cases developers need to take extra
actions when objects are being released, such as freeing handles
or deallocating unmanaged objects.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 37

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.109

Classes – A Classification

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.110

• Initializing data fields
 By setting a value in a constructor

 By assigning a value in the declaration

 An initialization block

• When constructor is called
 All dat fields are initialized to their default values

 All fields initializers and initialization blocks are executed, in
the order in which they occur in the class declaration

 If the first line of the constructor calls a second constructor,
then the body of the second constructor is executed

 The body of the constructor is executed

Defining Classes..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.111

• Object Destruction & the finalize Method
 Java doesn’t support destructors

 finalize method can be added to any class

 Called before the garbage collectordeprecated alternative is
Runtime.addShutdownHook

Defining Classes..

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 38

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.112

o “An object is an entity which has a state and a defined set of
operations which operate on that state.”

o The state is represented as a set of object attributes. The
operations associated with the object provide services to other
objects (clients) which request these services when some
computation is required

o Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

o An Object is anything, real or abstract, about which we store data
and those methods that manipulate the data.

o An object is a component of a program that knows how to perform
certain actions and how to interact with other elements of the
program.

Object- The CRUX of the matter!!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.113

• Each object is an instance of a particular class or subclass with
the class's own methods or procedures and data variables. An
object is what actually runs in the computer.

• Objects are the basic run time entities in an object oriented
system.

• They match closely with real time objects.

• Objects take up space in memory and have an associated
address like a Record in Pascal and a Structure in C.

• Objects interact by sending Message to one other. E.g. If
“Customer” and “Account” are two objects in a program then the
customer object may send a message to the account object
requesting for bank balance without divulging the details of each
other’s data or code.

• Code in object-oriented programming is organized around objects.

Object- The CRUX of the matter!!

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.114

Object- A representation

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 39

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.115

Object’s Attributes
 Attributes represented by data type.
 They describe objects states.
 In the Car example the car‘s attributes are: color, manufacturer,
cost, owner, model, etc.
Object’s Methods
 Methods define objects behavior and specify the way in which an
Object‘s data are manipulated.
 In the Car example the car‘s methods are: drive it, lock it, carry
passenger in it.
Objects- blueprints of classes
 The role of a class is to define the state and behavior of its
instances.
 The class car, for example, defines the property color.
 Each individual car will have property such as "maroon," "yellow"

Object- Attributes and Methods

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.116

Packages

• Grouping of classes

• Standard Java packages are inside java and javax

• A class can use all classes from its own package and all
public classes from other packages

• Import a specific class or entire package using import
statement

• Locating classes in package is an activity of package

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.117

• Static Imports

 In Java SE 5.0, import statement enhanced to import static
methods & fields

import static java.lang.System.*;

out.println(“---”);

 Two practical uses

Mathematical functions: static import of Math class

sqrt(pow(x,2)+pow(y,2))

Math.sqrt(Math.pow(x,2)+Math.pow(y,2))

Cumbersome constants

if (d.get(DAY_OF_WEEK) == MONDAY)

if (d.get(Calender.DAY_OF_WEEK) == Calender.MONDAY)

Packages..

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 40

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.118

Packages..

• Import ONLY imports public classes from the specified
package

• Classes which are not public cannot be referenced from
outside their package.

• There is no way to "import all classes except one"
 import either imports a single class or all classes within the

package
 Note: importing has no runtime or performance implications.
 It is only importing a namespace so that the compiler can

resolve class names.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.119

• Addition of a class into a Package

• Put the name of the package at the top of the calss

• No package name, source file belong to default package

Packages..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.120

Object Orientated Features

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 41

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.121

Object Orientated Features
Object orientation adapts to the following criteria's-

1. Changing requirements
2. Easier to maintain
3. More robust
4. Promote greater design
5. Code reuse
6. Higher level of abstraction
7. Encouragement of good programming techniques
8. Promotion of reusability

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.122

Object Orientated Features
1. OBJECT - Object is a collection of number of entities. Objects

take up space in the memory. Objects are instances of classes.
When a program is executed , the objects interact by sending
messages to one another. Each object contain data and code to
manipulate the data. Objects can interact without having know
details of each others data or code. Each instance of an object
can hold its own relevant data.

2. CLASS - Class is a collection of objects of similar type. Objects
are variables of the type class. Once a class has been defined,
we can create any number of objects belonging to that
class. Classes are user define data types. A class is a blueprint
for any functional entity which defines its properties and its
functions.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.123

Object Orientated Features
3. DATA ENCAPSULATION – Combining data and functions into a
single unit called class and the process is known as Encapsulation.
Class variables are used for storing data and functions to specify
various operations that can be performed on data. This process of
wrapping up of data and functions that operate on data as a single
unit is called as data encapsulation. Data is not accessible from the
outside world and only those function which are present in the class
can access the data.

4. DATA ABSTRACTION- Abstraction (from the Latinn abs means
away from and trahere means to draw) is the process of taking
away or removing characteristics from something in order to
reduce it to a set of essential characteristics. Advantage of data
abstraction is security.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 42

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.124

Object Orientated Features
5. INHERITANCE- It is the process by which object of one class
acquire the properties or features of objects of another class. The
concept of inheritance provide the idea of reusability means we can
add additional features to an existing class without modifying it.
This is possible by driving a new class from the existing one.
Advantage of inheritance is reusability of the code.

6. MESSAGE PASSING - The process by which one object can
interact with other object is called message passing.

7. POLYMORPHISM - A greek term means ability to take more
than one form. An operation may exhibit different behaviours in
different instances. The behaviour depends upon the types of data
used in the operation.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.125

Object Orientated Features
8. PERSISTENCE - The process that allows the state of an object to
be saved to non-volatile storage such as a file or a database and
later restored even though the original creator of the object no longer
exists.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.126

Inheritance

• is-a relationship
Class subclass-name extends superclass-name

{

// body of class

}

Subclass have more functionality then superclass

• Each Java class has one (and only one) superclass

• There is no limit to the number of subclasses a class
can have

• There is no limit to the depth of the class tree.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 43

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.127

• It is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors

• Superclass constructors can be called using the "super" keyword
in a manner similar to "this"

• It must be the first line of code in the constructor
• If a call to super is not made, the system will automatically

attempt to invoke the no-argument constructor of the superclass.
• Super has two general forms.

 The first calls the superclass constructor
 The second is used to access a member of the superclass that

has been hidden by a member of a subclass
• A superclass reference can refer to an instance of the superclass

OR an instance of ANY class which inherits from the superclass.
• Dynamic Method Dispatch will be applicable

Inheritance..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.128

Abstract Classes

• Contain 0 or more abstract methods.

• Act as place holders for abstraction

• Used heavily in Design Patterns

• Methods can also be abstracted

• Any class which contains an abstract method MUST
also be abstract

• Abstract classes can contain both concrete and
abstract methods

• Can never be instantiated

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.129

Interfaces
• Similar to an abstract class with the following

exceptions:
 All methods defined in an interface are abstract. Interfaces can

contain no implementation.
 Interfaces cannot contain instance variables. However, they

can contain public static final variables (i.e. constant class
variables)

 All methods are public by default & fields are public static
final

• Declared using the "interface" keyword
 If an interface is public, it must be contained in a file which has

the same name.
• Interfaces are more abstract than abstract classes
• Interfaces are implemented by classes by "implements“ keyword.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 44

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.130

• Interface can be implemented

• One interface can inherit other

• When a class implements an interface

 it must provide implementation for all the methods defined
within an interface chain

• a class may implement several Interfaces

• If an abstract class implements an interface, it NEED NOT
implement all methods defined in the interface.

access class classname [extends superclass]

[implements interface[,interface…..]]{

//class body

}

• Access is either public or not used

Interfaces..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.131

• Partial Implementation

• If a class includes an interface but does not fully
implements the methods defined by that interface then
that class must be declared as abstract

• Used in initial stages of Project Planning as a
blueprint

Interfaces..

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.132

Multiple Inheritance?

• Allowing classes to implement multiple interfaces is the same
thing as multiple inheritance

• This is NOT true. When you implement an interface:

 The implementing class does not inherit instance variables

 The implementing class does not inherit methods (none are
defined)

 The Implementing class does not inherit associations

• Implementation of interfaces is not inheritance.

• An interface defines a list of methods which must be
implemented.

• Interfaces afford the benefits of multiple inheritance while
avoiding the complexities and inefficiencies

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 45

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.133

Abstract Classes vs. Interfaces
• When should one use an Abstract class instead of an

interface?

 If the subclass-superclass relationship is genuinely an "is
a" relationship.

 If the abstract class can provide an implementation at the
appropriate level of abstraction

• When should one use an interface in place of an Abstract
Class?

 When the methods defined represent a small portion of a
class

 When the subclass needs to inherit from another class

 When you cannot reasonably implement any of the
methods

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.134

Overloading vs. Overriding

• Overloading occurs when two or more methods in one
class have the same method name but different
parameters.

• Overriding means having two methods with the same
method name and parameters (i.e., method signature).
One of the methods is in the parent class and the other
is in the child class.

• Overriding allows a child class to provide a specific
implementation of a method that is already provided its
parent class.

• Polymorphism applies to overriding, not to overloading.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.135

Object: The Cosmic Superclass

• Every class is a reference variable of type Object

• It can refer to an object of any other class extends
Object

• Object class is defined in the java.lang package
 Examine it in the Java API Specification

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 46

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.136

Object Wrapper and Autoboxing

• All primitive types have class counterparts- Reason
why java is fully OOPs and not Pure OOPs

• Wrapper class
1. Integer

2. Long

3. Float

4. Double

5. Short

6. Byte

7. Character

8. Void

9. Boolean

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.137

Java Autoboxing

• Converting a primitive value into an object of the
corresponding wrapper class is called autoboxing.

For example, converting int to Integer Class.

• The Java compiler applies autoboxing when a primitive
value is:

Passed as a parameter to a method that expects an object of
the corresponding wrapper class.

Assigned to a variable of the corresponding wrapper class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.138

Java Unboxing

• Converting an object of a wrapper type to its
corresponding primitive value is called unboxing.

For example conversion of Integer to int.

• The Java compiler applies unboxing when an object of a
wrapper class is:

Passed as a parameter to a method that expects a value of the
corresponding primitive type.

Assigned to a variable of the corresponding primitive type.

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 47

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.139

Inner Classes

• Class defined inside another class

• Uses
Can access the data from the scope in which they are defines

Can be hidden from other classes in the same package

Anonymous inner classes are handy when you want to define
callbacks without writing a lot of code

• An object of an inner class always gets an implicit
reference to the object that created it.

• Only inner classes can be private.

• Regular classes always have either package or public
visibilty

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.140

Nested Classes

• Nested classes are divided into two categories:
Static nested class : Nested classes that are declared static are

called static nested classes.

Inner class : An inner class is a non-static nested class.

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.141

Inner Classes

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 48

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.142

Static Inner Classes

• As with class methods and variables, a static nested
class is associated with its outer class.

• Like static class methods, a static nested class cannot
refer directly to instance variables or methods defined in
its enclosing class: it can use them only through an
object reference.

• They are accessed using the enclosing class name.
OuterClass.StaticNestedClass

• For example, to create an object for the static nested
class, use this syntax:

OuterClass.StaticNestedClass nestedObject = new
OuterClass.StaticNestedClass();

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.143

• To instantiate an inner class, you must first instantiate
the outer class. Then, create the inner object within the
outer object with this syntax:

OuterClass.InnerClass innerObject = outerObject.new
InnerClass();

Inner Classes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.144

• Local Inner Classes are the inner classes that are
defined inside a block. Generally, this block is a method
body.

• These class have access to the fields of the class
enclosing it.

• Local inner class must be instantiated in the block they
are defined in.

Local Inner Classes

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 49

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.145

• It is an inner class without a name and for which only a
single object is created.

• An anonymous inner class can be useful when making
an instance of an object with certain “extras” such as
overloading methods of a class or interface, without
having to actually subclass a class.

• Anonymous inner classes are useful in writing
implementation classes for listener interfaces in
graphics programming.

Anonymous Inner Classes

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.146

• In C/C++, programmer is responsible for both creation
and destruction of objects. Usually programmer neglects
destruction of useless objects. Due to this negligence, at
certain point, for creation of new objects, sufficient
memory may not be available and entire program will
terminate abnormally causing OutOfMemoryErrors.

• But in Java, the programmer need not to care for all
those objects which are no longer in use. Garbage
collector destroys these objects.

• Garbage collector is best example of Daemon thread as
it is always running in background.

Garbage Collection

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.147

• Main objective of Garbage Collector is to free heap
memory by destroying unreachable objects.

Integer i = new Integer(4); /* the new Integer object is
reachable via the reference in 'i‘*/

i = null; // the Integer object is no longer reachable.

Garbage Collection

MCA-109, Object-oriented Programming and Java

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason U1 50

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.148

• Even though programmer is not responsible to destroy
useless objects but it is highly recommended to make
an object unreachable(thus eligible for GC) if it is no
longer required. There are generally four different ways
to make an object eligible for garbage collection.

Nullifying the reference variable

Re-assigning the reference variable

Object created inside method

Island of Isolation

Eligible objects for GC

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.149

• Once we made object eligible for garbage collection, it
may not destroy immediately by garbage collector.
Whenever JVM runs Garbage Collector program, then
only object will be destroyed. But when JVM runs
Garbage Collector, we can not expect. We can also
request JVM to run Garbage Collector. There are two
ways to do it :
 Using System.gc() method : System class contain static

method gc() for requesting JVM to run Garbage Collector.

 Using Runtime.getRuntime().gc() method : Runtime class
allows the application to interface with the JVM in which the
application is running. Hence by using its gc() method, we can
request JVM to run Garbage Collector.

Requesting JVM to run GC

© Bharati Vidyapeeth’s Institute of Computer Applications and Management, New Delhi-63, by Dr. Ritika Wason, Asso. Prof., BVICAM U1.150

• Just before destroying an object, Garbage Collector
calls finalize() method on the object to perform cleanup
activities.

• Once finalize() method completes, Garbage Collector
destroys that object. finalize() method is present in
Object class with following prototype.

protected void finalize() throws Throwable

• Based on our requirement, we can override finalize()
method for perform our cleanup activities like closing
connection from database.

Finalization

