Bharati Vidyapeeth's

Institute of Computer Applications and Management (BVICAM)

A-4, Paschim Vihar, New Delhi-63

THIRD SEMESTER [MCA] Internal Examination, November 2023

Pap	Paper Code: MCA-105Subject: Operating Systems with Linux											
Time: 2 Hours Maximum M												
ľ	Note:	Attempt THREE questions in all. Question No. 1 is compulsory, and attempt	pt or	ne								
question from each unit.												
1.	Ans	wer all the following questions briefly: - 1.5	$1.5 \times 10 = 15$									
	(a)	Discuss the design goals of an operating system when the user sits in front of a consisting of a monitor, keyboard, mouse, and system unit.	I PC,	CO1								
	(b)	Explain the bootstrap process of operating system.		CO1								
	(c)	List the responsibilities of kernel in an operating system. Which type of kernel is a in Linux system?	used	CO1								
	(d)	Differentiate between monoprogramming and multiprogramming.		CO1								
	(e)	Draw the state transition diagram of a process.		CO1								
	(f)	Discuss the need of multilevel feedback queue scheduling by considering appropriate example.	g an	CO1								
	(g)	Explain the functions of a dispatcher in operating system.		CO3								
	(h)	Discuss the Semaphore mechanism to solve the critical-section problem. Identify situation when the value of semaphore becomes negative.	Identify the CO3									
	(i)	Identify the conditions to be fulfilled for the solution of a critical-section problem.		CO3								
	(j)	Write code snippet of TestAndSet() and its implementation code to solve the crit section problem.	snippet of TestAndSet() and its implementation code to solve the critical- blem.									
		UNIT - I										
2.	(a)	Discuss the various components of an operating system. Identify the need of dual mode operation in operating system.	7.5	CO1								
	(b)	Explain inter-process communication with its models.	7.5	CO1								
3.	(a)	Explain the process control block (PCB). Discuss the PCB implementation approach in Linux.	7.5	CO1								
	(c)	Describe the following terms: (a) asymmetric multiprocessing, (b) interrupt, (c) system call, (d) multithreading, and (e) medium-term scheduler.	7.5	CO1								
		UNIT - II										
4.	(a)	Discuss the various scheduling criteria for CPU scheduling. Consider a system	7.5	CO3								

(a) Discuss the various scheduling criteria for CPU scheduling. Consider a system 7.5 CO3 follows multilevel queue scheduling with following four processes:

Process	P1	P2	P3	P4
Arrival Time	0	0	0	10
Burst Time	4	3	8	5
Queue No.	1	1	2	1

Priority of queue 1 is greater than queue 2. Queue 1 uses round robin (time quantum = 2) and queue 2 uses first-come, first-served scheduling algorithms. Draw the Gantt chart and determine the average waiting time of each process.

- (b) Explain the readers-writers problem. Write algorithm (code snippet) to solve 7.5 CO3 the readers-writers problem using Semaphore.
- (a) Compare preemptive scheduling and non-preemptive scheduling. Consider the 7.5 CO3 following set of processes with the length of the CPU burst given in milliseconds:

Process	P1	P2	P3	P4	P5
Arrival Time	3	6	4	5	2
Burst Time	0	2	4	6	8

Determine the average waiting time, average turnaround time and throughput using shortest remaining time first and round-robin (quantum = 2 ms) scheduling algorithm.

(b) Explain the Bakery algorithm (with code snippet) for critical-section problem. 7.5 CO3 Discuss that the Bakery algorithm satisfies the three requirements of solution of critical-section problem?