

BHARATIVIDYAPEETH'S
INSTITUTEOFCOMPUTERAPPLICATIONS\&MANAGEMENT (BVICAM)
(AffiliatedtoGuruGobindSinghIndraprasthaUniversity,ApprovedbyAICTE,NewDelhi)A-
4,PaschimVihar,RohtakRoad,NewDelhi-110063,Visitusat:http://www.bvicam.in/

Course Code: MCA-101

Course Name: Discrete Structures

Class Test

Each question is of 5 marks

Q1.	Given a set S containing n elements, formulate a proof to show that the number of proper subsets of S is $2^{\wedge} n-n-1$, where a proper subset excludes the empty set and the set itself.
Q2.	Define a relation R on a set A such that R is both reflexive and symmetric but not transitive. Provide a concrete example to illustrate your definition.
Q3.	Given a set A with n elements, consider a relation R on A defined such that R is symmetric and antisymmetric. Analyze whether R can be reflexive, providing reasoning for your answer.
Q4.	Suppose you have two equivalence relations, $R 1$ and $R 2$, defined on a set A. Evaluate whether the intersection of $R 1$ and $R 2$ is also an equivalence relation. Justify your answer with examples.
Q5.	Create a matrix representation for a relation R on a set A, where $A=\{a, b, c, d\}$, and $R=$ $\{(a, a),(a, b),(b, c),(c, a)\}$. Then, determine whether the relation R is reflexive, symmetric, antisymmetric, and transitive.
Q6.	A committee of k members is to be formed from a group of n people. Evaluate the number of ways to form the committee when: $a)$ Order doesn't matter. b) Order does matter.
Q7.	lonsider a set S containing n elements. Analyze the number of ways to partition S into non-empty subsets.
Q8.	A committee of k members is to be formed from a group of n people. Evaluate the number of ways to form the committee when: $a)$ Order doesn't matter. b) Order does matter.
Q9.	Consider a set S containing n elements. Analyze the number of ways to partition S into non-empty subsets.
Q10.	Given a permutation of n distinct objects, determine the number of inversions in the permutation. Evaluate the formula for the number of inversions and provide a proof for its correctness.

